
4.3 Where are the proto-South China Sea slab ?
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• When all four models are considered together, ourgeodynamic models generally predict the PSCS slabs are under 
eastern Borneo, the present SCS, the Sulu Seamthe Celebes Sea, and the southern Philippines between 500 to 800 
km depths (black dashed lines).
• Slabs under the central Philippines is predicted from various sources: subducting a vanished ocean, a large 
Philippines Sea plate, or the PSCS; therefore, some caution is needed when inferring the plate tectonic histories of 
slabs under the central Philippines.
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1.2 Proposed proto-South China Sea plate model ?

• In this study we explored the contrasted plate tectonic 
reconstructions proposed for the proto-South China Sea and 
Southeast Asia. 
• Four different end-member plate models were implemented 
into global geodynamic numerical models to test their 
predicted mantle structure against seismic tomography.

1.3 Aims and Approach

• (a) Southward subduction model; (b) Double-sided subduction model; (c) Extrusion model; 
(d) Previous interpretation of the seismic tomography model for the PSCS slab in the 
mantle suggested it to be at ~500 km depth beneath present-day SCS by Rangin et al. 
(1999); at ~800 km depth central Borneo trending SW-NE to central Philippines based on 
UUP07 P-wave tomography model by Hall and Spakman (2015); at 400-700 km depth be-
neath Luzon islands based on regional P-wave tomography model by Fan et al. (2017); 
proto-South China Sea north slab (N-PSCS) at ~500 km depth beneath present-day SCS 
and proto-South China Sea south slab (S-PSCS) at ~800 km depth beneath southern SCS 
based on MITP08 P-wave tomography by Wu and Suppe (2018). Solid lines are the PSCS 
slabs of previous interpretation and the dashed lines are the inferred sizes.

Where are the proto-South China Sea slabs? SE Asia plate tectonic and mantle flow history from global mantle convection numerical modeling 
Yi-An Lin1 (ylin51@uh.edu), Lorenzo Colli1, Jonny Wu1

1University of Houston, Department of Earth and Atmospheric Sciences
Grant 1848327

Indochina

Philippine 
Sea plate 
(PSP) 

Sundaland 

Indo-Australian 
plate (IND) 

Borneo 

South China 
Sea (SCS) 

1.1 Regional Tectonic Settings

0°N  

120°E  

?  

?  

Proto-South 
China Sea  
(PSCS) ? 

30 Ma  

After Matthews et al. (2016)  

Dan
ge

rou
s 

Grou
nd

s 

• Reconstructions back to 30 Ma imply the possible existence of a proto-South China Sea.
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1.4 Contrasted Plate Models in SE Asia
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• Southeast Asian plate tectonic reconstruction parameters im-
plemented into the geodynamic models in this study. (a) and (b) 
show the southward PSCS subduction and double-sided PSCS 
subduction models, respectively; (c) and (d) show later and ear-
lier proposed Borneo counterclockwise rotations, respectively; 
and (e) and (f) show proposed larger and smaller end-member 
Philippine Sea (PS) plate sizes, respectively.
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2.3 Input Kinematic Boundary  Condition
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2. Methods

4.2 Correlation between Geodynamic Model and Tomography
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4.1 Comparison to Tomographic Vote Map
(GAP04, MITP08, UUP07)
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Number of Votes

Model 2b

• Predicted mantle flows and mantle structures from model 2b under Indochina and Hainan Island predict a 
mid-mantle convective upwelling beneath Indochina and Hainan.
• All four models produced similar mantle flows in this region. This shows the predicted mantle flow of the preferred 
model (model 2b).
• Extensive downwelling beneath SCS at 0 Ma does not support the idea of deep-origin ‘Hainan’ mantle plume.
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600 km depth

3. Results

• Color-coded correlation coefficient matrix 
showing similarities between various geodynamic 
models, seismic tomography models, and 
geodynamic models v.s. seismic tomography 
models at 400-600 km depths. Models 2a and 2b 
show higher correlations to seismic tomography 
models relative to Models 1a and 1b. 
• The global P-wave seismic tomography models 
MITP08 (Li et al., 2008),GAP_P4 (Fukao & 
Obayashi, 2013) and UUP07 (Amaru, 2007) show 
~0.6-0.8 correlations relative to each other. The 
correlation between geodynamic models and 
seismic tomography models is ~0.2 correlation, 
which is comparable to global averages for degree 
1-20 (Shephard et al., 2012)

600 km depth

Model 2a

• Results of the reference Model 1a that implemented southward PSCS subduction. (a) 3D 
visualizations of the time-dependent mantle thermal structure evolution for the reference 
southward subduction model 1a from 30 to 0 Ma. The top surface shows the PSCS in green 
and reconstructed Borneo coastlines. At 0 Ma (present-day), the southward-subducted pro-
to-South China Sea (S-PSCS) slabs are located at ~400-800 km depths beneath Borneo. (b) 
The 0 Ma temperature field from a) converted to a full-resolution P-wave perturbation (dVp) 
following Schuberth et al. (2009). 
• (c) Cross-section in (b) filtered through the LLNL-G3D resolution operator (Simmons et al., 
2019) to show a ‘synthetic tomography’ of the 0 Ma geodynamic model. (d) Comparison to 
section co-located to (c) from actual LLNL-G3D-JPS P-wave seismic tomography model 
(Simmons et al., 2016). The Sunda (SUN) slabs are generally reproduced but a mismatch 
exists under the present SCS. 
• (e) S40RTS resolution operator (Ritsema et al., 2011) was applied to (b). The cold slabs 
under the northern SCS in (b) are not seen in (e), indicating lack of resolution in these areas. 
(f) Comparison of (e) to actual S40RTS S-wave seismic tomography model (Ritsema et al., 
2011). 
• The comparison between predicted and imaged mantle structure from S-waves shows the 
Sunda slabs are generally reproduced but a mismatch exists under the SCS, similar to the 
P-wave comparison in (c) and (d).

• Fast-anomaly vote maps from MITP08, GAP_P4 and UUP07 seismic tomography model at 600 km depths in comparison to 
models 1a, 1b, 2a, and model 2b. Color lines indicate the fast anomalies from the full resolution, dVp- converted geodynamic 
model results. All models generally reproduce the Sunda slabs. Model 2b was able to better reproduce the slabs under the 
present SCS and therefore, is our preferred model.

-500

dT (avg)

+5000

(a)0 Ma (c) LLNL-G3D Filtered dVp

0

500

1000

0

500

1000

-6dVp 
(%)

+60

0

500

1000

A

SUN

SCS

0

500

1000

A

A’

A’

(d) LLNL seismic tomography

N-PSCS

S-PSCS

SUN
N-PSCS

S-PSCS

SUN
N-PSCS

S-PSCS
Model 1b 

filtered

Borneo
Borneo

Borneo Borneo

PS

P-PS

SCS

SCS

SCS

D
ep

th
 (k

m
)

500 km -6dVp 
(%)

+60

-4dVp 
(%)

+40

3.2 Reference Double-Sided Subduction (Model 1b)

(b) Converted Full Resolution dVp

• Results of the reference Model 1b that implemented a similar input plate model to Model 1a 
but invoked double-sided PSCS subduction. (a) At 0 Ma, the predicted present-day S-PSCS 
is at ~400-800 km depths beneath Borneo and the northward-subducted PSCS slabs 
(N-PSCS) is at ~400-500 km depths beneath the southern SCS. (b) The temperature field 
from a) at 0 Ma converted to dVp following Schuberth et al. (2009). (c) Cross-section in (b) fil-
tered through the LLNL-G3D resolution operator (Simmons et al., 2019). 
• (d) Comparison of (c) to actual LLNL-G3D-JPS P-wave seismic tomography model (Sim-
mons et al., 2016) across the same location. The SUN slabs are generally reproduced in the 
geodynamic model but the sub-horizontal slabs under the SCS do not match well to the geo-
dynamic model.

3.3 Refined Model (Model 2a and 2b)
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• (a) 0 Ma mantle structure 
predicted from the refined 
southward subduction model 
2a shows the southward-sub-
ducted S-PSCS slabs at 
~400-1000 km depths under 
Borneo. (b) The refined dou-
ble-sided model 2b shows 
S-PSCS slabs at ~400-1000 
km depth under Borneo and 
northward-subducted N-PSCS 
slabs at ~500-700 km depths 
under the southern SCS. 

• Comparison between global 
P-wave seismic tomography 
models (c-f) and the geody-
namic models (yellow and 
black outlines) across B-B’ 
shows that the N-PSCS slabs 
in Model 2b has a better 
match to the sub-horizontal 
slabs under the present SCS 
in tomography at 400 to 700 
km depths. Thus we conclude 
that Model 2b is our preferred 
model.
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4.5 Predicted Dynamic Topography
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shelf dynamic topography; 1: Phitsanulok, 2: 
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Thermal subsidence + dynamic topography predicted from: 

(c)
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• Dynamic topography predicted by the geodynamic models in this study. (a) Models 1a, 1b, 2a and 2b shows highly 
contrasted dynamic topography histories at Sunda shelf. This suggests that dynamic topography predictions are 
strongly dependent on the input plate model, which are controversial. (b) Comparison between observed and predict-
ed tectonic subsidence at the Cuu Long basin, offshore Vietnam. (c) Map showing the sedimentary basins used to 
calculate an average Sunda shelf dynamic topography. 
• At the post-rift stage there is ~400 m vertical discrepancy between the observed tectonic subsidence (black line) 
and the modeled thermal subsidence (grey line). By adding the predicted dynamic topography to thermal subsidence, 
we show a better fit the predicted total tectonic subsidence (colored dashed lines). Models 1b and 2a yield the best 
match to the observed subsidence.

•  Input: Global plate model 
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•  Output: 4D global mantle thermal structure and flow field

Summary
• The plate tectonic history of the hypothesized ‘proto-South China Sea’ (PSCS) ocean basin and surrounding SE Asia since Cenozoic 
times is controversial.
• We implement four diverse PSCS plate reconstructions into global geodynamic models to constrain PSCS plate tectonics and possible 
slab locations. 
• The double-sided PSCS subduction models with late Oligocene initiation of Borneo counterclockwise rotations and smaller reconstructed 
Philippine Sea plate sizes can better reproduce the SE Asian mantle structure.
• Double-sided PSCS subduction combined with earlier Borneo rotations uniquely reproduces sub-horizontal slabs under the southern 
South China Sea at ~400 to 700 km depths; these models best fit seismic tomography.
• A smaller Philippine Sea (PS) plate 37 with a ~1000 km-long restored Ryukyu slab was superior to a very large PS plate.
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