Size-segregated ions and carbonaceous fractions of ambient aerosol in Bogotá - Colombia

L. Mateus, K.J. Burbano, N.Y. Rojas, R. Jiménez

EGU General Assembly 2020 8 May 2020

Outline

- Background Air quality in Bogota.
- Aim of this work.
- Methodology.
- Results.
- Conclusions.

Bogota: a high-altitude megacity

- Located in a plateau at 2600 masl in the tropical Andes
- 9.5 million inhabitants in its metropolitan area (ca. 20% of Colombia)
- 2.2 million vehicles
- Industrial activities
- $PM_{2.5} \sim 20 \mu g/m^3$ annual mean
- 2000 5000 annual premature deaths associated with air pollution

Air quality in Bogotá

Temporal and spatial variability of urban aerosol due to synoptic and local meteorological conditions

Source: Annual local report of Air quality for Bogota 2018.

Events of high concentrations of urban aerosols: PM₁₀ and PM_{2.5}

Source: Journal Semana.com

Events of transboundary pollution of biomass burning aerosols in the Orinoco Basin

Background

Very few published studies in Latin America on particle size distribution and chemical composition

UNIVERSIDAD NACION

6

CC θ BY

Aims of this presentation

To show preliminary results of size-resolved chemical composition in an area with industrial influence at western Bogota (Fontibon).

Area of influence

Sampling location

Location and sampler

- Urban area influenced by nearby industrial and vehicle emissions
- 6-m building roof
- Andersen 8-stages cascade impactor
- 72 hours per sample set, 27.3 L/min
- 19 sets of samples (19 weeks)

Aerodynamic Diameter (µm	ECD	
> 9.0	9.0	Stage 0 Nose
5.8 - 9.0	5.8	Stage 1
4.7 - 5.8	4.7	Stage 2 Pharynx
3.3 - 4.7	3.3	Stage 3 Traquea & primary bronqui
2.1 - 3.3	2.1	Stage 4 Secondary Bronqui
1.1 - 2.1	1.1	Stage 5 Terminal bronqui
0.65 - 1.1	0.65	Stage 6
0.43- 0.65	0.43	Stage 7 - Alveoli
< 0.43		Filter 8

Chemical Composition analysis

- 81-mm quartz filters, pre-baked at 600 °C for 8 h
- Thermographic method (TGVDI) for carbonaceous fractions
- Ion chromatography for ions

Leibniz Institute for Tropospheric Research

1. Carbonaceous fraction

EC $OM = OC \times 1.8$

2. Water soluble ions

Ca⁺², Mg⁺², NH₄⁺, Na⁺, K⁺ and SO₄⁻², NO₃, Cl⁻, C₂O₄⁻², CH₃O₃S⁻, PO₄⁻³, NO₂⁻, Br⁻, F⁻ and CHO₂⁻.

Mass Size Distribution

Median of concentrations \pm sd. dev ($\mu g/m^3$)

PM₉ **PM**_{2.1} **PM**_{1.1} 86.71 41.49 30.27 (±29.63) (±14.66) (±11.24)

30% - 50% of aerosol mass in sizes that can penetrate into the secondary bronchi.

20% - 40% into the alveoli.

■PM9 ■PM2.1 ■PM1.1 - Limit value PM10 - Limit value PM2.5 - WHO PM10 - WHO PM2.5

10

Background Aims Methodology Results

Mass Size Distribution of main components

Chemical composition size segregated

Percentage of chemical components into the parts of the human respiratory system

Background Aims Methodology Results Conclusions

Conclusions

- PM_9 and $PM_{2.1}$ were well above Colombian national air quality standards $(PM_{10} \text{ and } PM_{2.5})$ and WHO guidelines
- $PM_1 \sim 30 \mu g/m^3$ (can penetrate into alveoli). 50% of it is Organic Material and 20% is Elemental Carbon
- Elemental Carbon is more abundant in the accumulation mode, while Organic Material is more abundant the coarse mode.

Background Aims Methodology Results Conclusions

Acknowledgments

- Universidad Nacional de Colombia Project No 37617.
- Leibniz Institute for Tropospheric Research Chemistry on the atmosphere Department.
- PAPILA

Thanks!

L. Mateus, K.J. Burbano, N.Y. Rojas, R. Jiménez

EGU General Assembly 2020 8 May 2020

