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Uncertainty in global soil C stock estimates and
projections by ESMs

Carbon balance projections for 21 century vary from 72 GT C loss to 253 GT C gain

(TOdd-Bl’ own et al., 2014) Estimates of future SOC dynamics range widely, and recent compilations of soil
radiocarbon suggest that global models underestimate the transit time of C in soil,
biasing estimates for soil C sequestration in future years (He et al., 2016).

Current carbon stock estimates are 425 - 2111 GT C (Tian ef al., 2015, based on
Multiscale Synthesys and Terrestrial Model Intercomparison Project (MsTMIP), 22
models) or 510 - 3040 GT C (from 5th IPCC report based on results of Coupled
Model Intercomparison Project CMIPS, 11 models). é6th IPCC report coming in 2021
based on comparison project CMIPé is expected to include nearly 100 models.
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SOC modelling framework with changeable structure

Main mechanisms:
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Model input data, simulation and parametrization

Model input data:

e litter fall

® soil surface temperature
® soil moisture

- Input data for parametrization were taken from
historic time series of mean annual values for LTBF
sites.

- Input data for projections were taken from Earth

System Model. Community Earth System Model (CESM 4.0)

Scenario: 1deg_ GSWP3v1_CMIP6_SSP3-7
Global Soil Wetness Project Phase 3
Grid 1.25 x 0.94°

Model parameters:

e Distribution ratio of litter fall Cinput between
physical fractions

e Reaction rates of SOM decomposition for each
physical fraction

e Microbial CUE, microbial maintenance respiration
(turnover), SOM temperature and moisture
sensitivity

e In total 18 parameters in the most complex model
structure

Model simulation includes 400 years spin-up with average temperature,
moisture and litter fall of historic input data, or first 15 years of ESM
projection scenario, followed by model run with input data.

The model was validated by simulation of bulk soil C in several
long-term experiments (experimental data from Barre et al., 2012)
with best fit model parameterized on Versailles chronosequence

fractionation data (see sss10.4).
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To simplify model fit to a given
equilibrium carbon concentration
we introduce scaling parameter:
characteristic carbon
concentration ¢, (related to
nonlinear reaction terms of the
system). c, effects all reaction
rates in the model as a factor
¢, where x is reaction kinetics

order.



https://meetingorganizer.copernicus.org/EGU2020/session/35108

Sensitivity analysis, parameter uncertainty

Different versions of the model (over 200) were fitted to experimental time series of carbon content in physical fractions
and compared using Bayesian information criterion (BIC). Sensitivity analysis was used to obtain standard error for model
parameters (see sss10.4). A group of microbial models with dormant state gave better performance, while including physical
occlusion and density-dependent adsorption strength gave no improvement. For further analysis of effect of structural
uncertainty on global projections we consider the best fit model and it’s simplified versions, as well as first order kinetics
model.
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Figure shows carbon dynamics in physical
fractions, obtained with model parameters
sampled from normal distributions with estimated
standard errors.
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Results: comparison of model projections

model 1
model 2
model 3
model 4
model 5

0 50 100 150

Time, years

Carbon stock, normalized to its initial value for
different model versions.

Linear model, microbial model and
microbial model with dynamic CUE and
stable pool give similar result for overall
carbon balance, but different spatial
distribution and variance

Effect of dynamic stable pool gives much
faster decay in carbon stock, as all carbon
can be consumed in this case.

Effect of dynamic CUE gives increase in
carbon stock as decay rates grow slower
with temperature and cannot compensate
increasing litter input.



Results: structural uncertainty
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c) Model parameters were sampled using normal
distributions with standard errors, obtained by

sensitivity analysis. Then a bunch of projection
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calculated.

o For each bunch standard deviation of carbon
stock, normalized to its initial value was
calculated at every time point, the result is
plotted on the figure.
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Conclusions

« Considering additional effects in the model structure results in better model
performance (BIC), but may strongly change global carbon projections from
gain to loss

« The simplest microbial model demonstrated the lowest uncertainty

« The simplest and the most complex microbial models produced similar
projections for average carbon stock change, however its spatial distributions
was very different (with higher spatial variation for complex model)

« Modeling chronosequence data from different locations is necessary to
investigate relevant microbial feedbacks.
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