
The Basic Model Interface (BMI)
is a standardized set of functions
that allows coupling of models to
models and models to data

The Basic Model Interface 2.0: A standard
interface for coupling numerical models and
data in the hydrologic sciences

Eric W. H. Hutton (eric.hutton@colorado.edu)

Mark D. Piper

Tian Gan

Greg E. Tucker

University of Colorado, Boulder, CO USA

pymt is the Python Modeling Toolkit. It is an Open Source Python package, developed by
the Community Surface Dynamics Modeling System (CSDMS), that provides the tools
needed for coupling models that expose the Basic Model Interface (BMI).

The Python Modeling Toolkit (pymt)

pymt in three points:

Tools for coupling models/data of disparate time and space scales and
computational grids

A collection of Earth-surface models, written in a range of languages, brought
together in an easy-to-use python interface

Extensible plug-in framework for adding new modelsBackground

The hydrologic modeling and data
community has embraced the open
source movement as evidenced by the
ever increasing number of FAIR models
and datasets available to investigators.
Although this has resulted in new science

through innovative model application,
development, and coupling, the
idiosyncratic design of many of these
models and datasets acts as a speed
bump that slows the time-to-science.

The Basic Model Interface version 2.0
(BMI) specification defines a standardized
interface for both models and data. This
allows all models and datasets with a BMI
to look alike, regardless of their underlying
implementation or, in fact, even if they are

truly a model or a dataset. With
idiosyncratic implementation details
obscured, models and data are more
easily and quickly picked up and used - if
you know how to use one BMI model, you
know how to use any BMI model.

BMI is a library specification to simplify model-to-
model and model-to-data coupling

pymt supports BMIs from a range of languages

package csdms version 2.0b0 {
 interface bmi {

 // Model control functions: Initialize, run, finalize (IRF)
 int initialize(in string config_file);
 int update();
 int update_until(in double time);
 int finalize();

 // Model information functions: Metadata about model’s exchange items
 int get_component_name(out string name);
 int get_input_item_count(out int count);
 int get_output_item_count(out int count);
 int get_input_var_names(out array<string, 1> names);
 int get_output_var_names(out array<string, 1> names);

 // Variable functions: Metadata about exchange items
 int get_var_grid(in string name, out int grid);
 int get_var_type(in string name, out string type);
 int get_var_units(in string name, out string units);
 int get_var_itemsize(in string name, out int size);
 int get_var_nbytes(in string name, out int nbytes);
 int get_var_location(in string name, out string location);

 // Variable functions: Metadata about exchange items
 int get_current_time(out double time);
 int get_start_time(out double time);
 int get_end_time(out double time);
 int get_time_units(out string units);
 int get_time_step(out double time_step);

 // Getters: Get variables from a model
 int get_value(in string name, in array<> dest);
 int get_value_ptr(in string name, out array<> dest_ptr);
 int get_value_at_indices(in string name, in array<> dest,
 in array<int, 1> inds);

 // Setters: Set values into a model
 int set_value(in string name, in array<> src);
 int set_value_at_indices(in string name, in array<int, 1> inds,
 in array<> src);

 // Grid information: Description of model grids
 int get_grid_rank(in int grid, out int rank);
 int get_grid_size(in int grid, out int size);
 int get_grid_type(in int grid, out string type);

 // Uniform rectilinear
 int get_grid_shape(in int grid, in array<int, 1> shape);
 int get_grid_spacing(in int grid, in array<double, 1> spacing);
 int get_grid_origin(in int grid, in array<double, 1> origin);

 // Non-uniform rectilinear, curvilinear
 int get_grid_x(in int grid, in array<double, 1> x);
 int get_grid_y(in int grid, in array<double, 1> y);
 int get_grid_z(in int grid, in array<double, 1> z);

 // Unstructured
 int get_grid_node_count(in int grid, out int count);
 int get_grid_edge_count(in int grid, out int count);
 int get_grid_face_count(in int grid, out int count);
 int get_grid_edge_nodes(in int grid, out array<int, 1> edge_nodes);
 int get_grid_face_edges(in int grid, out array<int, 1> face_edges);
 int get_grid_face_nodes(in int grid, out array<int, 1> face_nodes);
 int get_grid_nodes_per_face(in int grid, out array<int, 1> nodes_per_face);
 }
}

The BMI specification as SIDL.
Below is what the BMI specification looks like in the Scientific Interface Definition Language
(SIDL).

PRMSv6

GSFLOW

MODFLOW

bmi bmi

GroundwaterPrecipitation Runoff

Groundwater & surface water

Also in development:
• MATLAB (Octave)
• NetLogo
• Julia

Although BMI was initially written as an
interface for numerical models, we have
extended it to also be able to include
datasets.

This allows investigators to be able, in a
reproducible way: compare models to one
another using a common dataset, validate
models to data, ingest data into a model,
swap models and data within a workflow.

The BMI is not just for models. Data components
allow datasets to be interchangeable with models

(above) The BMI enabled PRMS (v6) model is driven by a BMI enabled Gridded Met Data
component. (below) The PRMS model is part of a larger collection of BMI-enabled models.

PRMSv6

Precipitation Runoff

bmi

bmi

THREDDS Server:
USGS Gridded Met Data

Other data components:
• NWM
• NHM
• ERA5 (in development)

mailto:eric.hutton@colorado.edu
mailto:eric.hutton@colorado.edu

