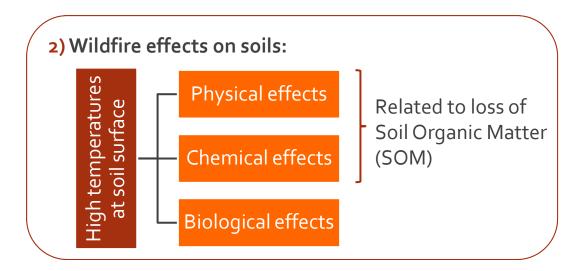

A NUMERICAL APPROACH FOR UNDERSTANDING THE MAIN PARAMETERS AND PROCESSES INFLUENCING THE SOIL ORGANIC MATTER DECAY DURING WILDFIRES

Sebastián A. Aedo, Carlos A. Bonilla (slaedo@uc.cl, cbonilla@ing.puc.cl)

Department of Hydraulic and Environmental Engineering Pontificia Universidad Católica de Chile



Introduction

3) Knowledge gap:

Although there are models that have a good representation of the soil thermal evolution under extreme heating conditions, they do not incorporate the high-temperature induced SOM decomposition.

4) Objectives:

To understand how wildfires affect SOM and to identify which are the main soil properties involved in this process.

- To develop a numerical model to predict the SOM decay during wildfires.
- To study and identify which are the main parameters that affect SOM decay.

) () BY

(CC)

Introduction <u>Model</u>

Validation

Developed model

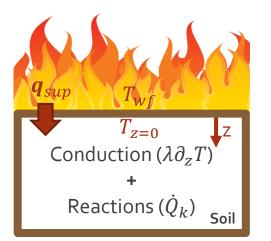


Figure 1: Model diagram.

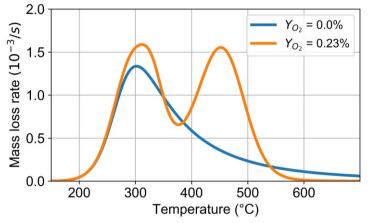


Figure 2: Moss peat thermogravimetric analysis.

Table 1: Model summary.

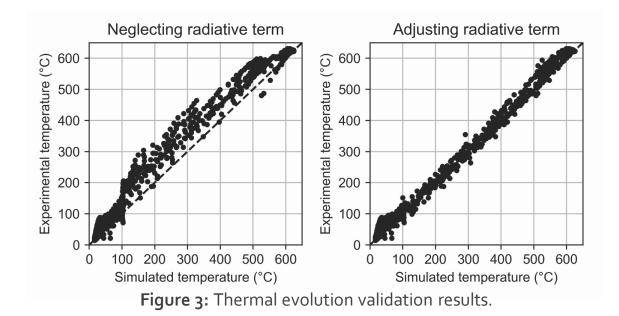
Sub-Model	Description	Output
Surface condition	Radiative flux boundary condition: $\boldsymbol{q}_{sup} = \varepsilon \sigma (T_{wf}^4 - T_{Z=0}^4)$	
Soil heating (Reaction- conduction)*	$\rho c \partial_t T = \partial_z (\lambda \partial_z T) + \sum \dot{Q}_k$ $\lambda(\theta) = \underbrace{\lambda_{soil}(\theta)}_{Lu \ et \ al., \ 2014} + \underbrace{\lambda_{rad}(T)}_{Massman, \ 2015}$	SOM and
Combustion kinetics	$\begin{split} \dot{Q}_k &= \Delta H_k \dot{\omega}_{dk} \\ \dot{\omega}_{dk} &= m_d^{n_k} \mathbf{Z}_k \exp\left(-\frac{E_k}{RT}\right) g(Y_{O2}) \\ \text{(Huang and Rein, 2016)}^{**} \end{split}$	Temperature evolution
Water vaporization	Same as combustion but calibrated to represent vaporization ~100°C	

*Fluid movement not considered.

**Moss peat is considered as representative biomass for SOM.

Validation

• The model has a good agreement with the measured temperatures.


Model

Introduction

- The main features of the soil thermal evolution are simulated.
- Errors are attributed to underestimations of the soil thermal conductivity.
- The radiative term compensates the underestimations on the thermal conductivity. Adjusted volumetric pore radius ranged from 1 mm to 2 mm.

 $\lambda_{rad}(T) \approx 3.8\sigma R_p T^3$

Volumetric pore radius

Parameters analysis

Conclusions

Model parameters analysis

Table 2: Model parameters and range in which they were tested.

Class	Parameter	Values
Soil description	Texture (1)	Sand and clay variations in a soil texture
	Texture (2)	Centroid of each soil texture
	Bulk density	0.8 g/cm ³ to 1.6 g/cm ³
	Volumetric pore radius	o.o mm to 4.o mm
Initial conditions	Soil water content	$Dry - \theta_{1500} - \theta_p - \theta_{33} - Sat.$
	Soil organic matter	o% to 8%
	Initial temperature	20°C to 40°C

 $^{*}\theta_{p}=(\theta_{33}+\theta_{1500})/2$

- Heating source temperature ranged from 200°C to 1000°C
- Maximum exposure time was of 6 hours.

- <u>SOM decay increases with:</u>
 - Lower water content
 - Higher sand fraction and lower clay fraction
 - Higher volumetric pore radius
- Low-influential parameters over SOM decay:
 - Uncertainty within a soil texture
 - Initial temperature
 - Bulk density
- SOM decay is almost proportional for any initial SOM content.
- Water plays a primary role as a heat absorber.
- Effect of texture over SOM decay is related to the initial water content (Average between FC and PWP).

Model

Conclusions

About the model:

- The model underpredicts the soil thermal evolution but can be enhanced by adjusting the volumetric pore radius with values between 1 mm to 2mm.
- The developed model represents the main features of the thermal evolution during extremes events.
- The coupled soil heating-SOM combustion model is a novel approach:
 - To understand how SOM is affected after wildfire events.
 - To represent vaporization without the need of additional empirical relationships.

Take-home lab (or field) messages:

- When studying high-temperatures induced SOM decay, variations in the following parameters could be omitted:
 - Initial temperature
 - Bulk density
 - Uncertainty within a soil texture
- SOM decay is proportional for any initial SOM.
- Water plays a main role as a heat absorber.

) () BY

CC

A NUMERICAL APPROACH FOR UNDERSTANDING THE MAIN PARAMETERS AND PROCESSES INFLUENCING THE SOIL ORGANIC MATTER DECAY DURING WILDFIRES

Sebastián A. Aedo, Carlos A. Bonilla (slaedo@uc.cl, cbonilla@ing.puc.cl)

Department of Hydraulic and Environmental Engineering Pontificia Universidad Católica de Chile

Acknowledgments

This research was supported by funding from the National Commision for Scientific and Technological Research, Grant CON-ICYT/FONDECYT/Regular 1191166.

