Spatio-temporal characteristics and focal mechanisms of deep low-frequency earthquakes beneath Zao volcano, Japan

*Takuma Ikegaya¹ (e-mail: takuma.ikegaya.s1@dc.tohoku.ac.jp), Mare Yamamoto¹

1. Graduate School of Science, Tohoku University

Highlight

- We made a comprehensive catalog of 1202 deep low-frequency earthquakes (DLFs) including small ones (M<0.5) between Jan. 2012 and May 2018 using the matched filter method
- By using waveform correlation, we classified 939 DLFs into 7 groups
- Six groups are located at the shallow (20-28 km) cluster and 1 group is located at the deep (28-38 km) cluster whose activity precedes shallow one by about 1 year
- We revealed the difference of the focal mechanisms of DLFs in shallow and deep clusters, which indicates the difference of fluid involvement

1. Introduction & Objective

Deep Low-Frequency earthquakes (DLFs) beneath Zao volcano

DLFs are possible evidence for deep-seated magmatic activities beneath volcanoes

• After the 2011 Tohoku Earthquake (Mw: 9.0), the activities of DLFs become more active

→This suggests the deep volcanic fluid activity after the huge earthquake

• The shallow (20-28 km depth) and deep (28-40 km depth) clusters are located middle and lower part of a high Vp/Vs zone, respectively (Okada et al., 2014)

→This implies different fluid involvement and source processes of DLFs

Objective

To reveal the activity of deep-seated magma beneath Zao volcano, we systematically examined the spatio-temporal characteristics and focal mechanisms of DLFs.

2. Detection & location of DLFs

Manual picking of small DLFs is difficult. \rightarrow We detected and located DLFs by waveform correlation.

Event detection using matched filter method (e.g. Shelly et al., 2016)

DLFs similar to templates can be detected in continuous waveform data.

- Continuous waveform data (Jan. 2012-May 2018)
- Templates: 146 DLFs listed in the JMA unified earthquake catalog (Jan. 2012-Sept. 2016)
- Parameter
 - Frequency band: 1-8 Hz
 - Time window: 28 seconds (+2~+30 s since origin time)
 - Two step scanning: 1st step ...scan through the continuous data of whole period (threshold 0.2, 3 stations, 3 comp.) $\rightarrow 2^{nd}$ step ...scan through the data around the time when the threshold is exceeded (threshold 0.1, 10 stations, 3 comp.)

Location using master event method (e.g. Ito, 1985)

The relative locations of detected DLFs to templates with maximum correlation are determined using the differential travel times measured by waveform correlation.

 \rightarrow New comprehensive catalog of 1202 DLFs

(about 4 times the number of 286 listed in JMA catalog of the same period) including small ones (M < 0.5)

3. Classification of DLFs

In order to clarify the general spatio-temporal characteristics and physical processes, we classified DLFs using waveform correlation.

Classification using waveform correlation

- Templates are grouped using the hierarchical clustering method
- Newly detected DLFs are grouped into the same groups of templates with the maximum correlation
- →939 events are classified into 7 groups (group A: 241 events, B: 222, C: 295, D: 79, E: 42, F: 37, G: 23)

Waveform characteristics of each DLFs group

- Groups other than C: only low freq. components (1-4 Hz)
- Group C: high freq. components (4-8Hz) in P-wave at stations in NE and SW of hypocenters

4. Spatio-temporal characteristics of each DLFs group 5

Spatial characteristics

- Shallow cluster: other than C ...middle part of a high Vp/Vs zone
- Deep cluster: group C
 ...lower part of a high Vp/Vs zone

Temporal characteristics

- Activity of DLFs in the shallow cluster (other than C) became intense one year after the activation of DLFs in the deep cluster (group C)
- Shallow volcanic activity started after a year of activation of DLFs in the deep cluster

5. Azimuthal variation of S/P spectral ratios

We estimated focal mechanisms based on stacked S/P spectral ratios.

Observed S/P spectral ratios

[1] Calculation of S/P spectral ratios of individual DLFs

- Station: 8 stations whose horizontal distances from hypocenters of DLFs are less than 30 km
- Frequency band: 1-3 Hz
- Components: P-wave ...vertical comp., S-wave ...horizontal comp.
- Time window: 5 seconds (P-wave ...since theoretical arrival time -2 s, S-wave ...since theoretical arrival time -1 s)

[2] Stacking of spectral ratios for each group

Logarithmic averaging of spectral ratios whose DLFs are located close to each other

- Shallow cluster (other than C): low values in all azimuthal directions
- Deep cluster (group C): maximum peaks in the northeast and southwest directions

6. Depth dependence of focal mechanisms

Estimation of focal mechanisms using S/P spectral ratios

[1] Assume 6 focal mechanisms, and estimate the optimal parameters for each model

- 6 basis focal mechanisms are assumed: (1) Double Couple (DC), (2) Compensated Linear Vector Dipole (CLVD),
 (3) Tensile Crack (TC), (4) DC + isotropic spherical source (ISO), (5) DC + CLVD, and (6) DC + TC
- The optimal model parameters which minimize the residual between the theoretical and observed value of the S/P spectral ratio at each station are estimated by grid search
- In calculation of theoretical value, body-wave radiation patterns in a semi-infinite space are computed

[2] Select the model with the smallest AIC (Akaike, 1973) as the optimal one

→DC + TC (group A, D, E), TC (group B, F), DC + ISO (group C, G)

Decomposition of moment tensors

- Shallow cluster (other than C): dominant non-double-couple components
- Deep cluster (group C) : dominant double-couple component

Possible causes of this difference

- The increase in differential stress near the Moho discontinuity (e.g., Bürgmann and Dresen, 2008)
- The difference in the amount and shape of the melt at the middle and lower parts of the high Vp/Vs zone

7. Conclusion

- We examined the spatio-temporal characteristics and focal mechanisms of deep low-frequency earthquakes (DLFs) to reveal the activity of deep-seated magma beneath Zao volcano
- We made a comprehensive catalog of 1202 DLFs including small ones (M<0.5) between Jan. 2012 and May 2018 by detection and location based on waveform correlation
- Using waveform correlation, we grouped 939 DLFs into 7 groups

	Shallow cluster (19-28 km depth)	Deep cluster (28-38 km depth)
Temporal change	Start of activity: 2013 Reactivation: 2016	Start of activity: 2012 Reactivation: 2015
P-wave spectrum		High freq. components (4-8 Hz) are superimposed.
S/P spectral ratio	Low values for all azimuth	Azimuthal variation
Focal mechanism	Dominant non-double couple components	Dominant double couple component

→This implies the difference of the state and dynamic processes of deep-seated magma at each depth

Appendix: S/P spectral ratios of optimal models

Appendix: Lower focal hemispheres of optimal models

