IMPORTANCE OF SPECTROSCOPIC EFFECTS IN LASER-BASED FLUX MEASUREMENTS

George Burba^{1,2}, Tyler Anderson³, and Anatoly Komissarov¹

¹LI-COR Biosciences, 4647 Superior St, Lincoln, Nebraska 68504, USA; ²R.B. Daugherty Water for Food Global Institute & School of Natural Resources, University of Nebraska 68583, USA; ³ Magic Leap Inc., 7500 W Sunrise Blvd, Plantation, Florida 33322; former Apple Computer, 1 Apple Park Way, Cupertino, California 95014, USA

LASER MEASUREMENTS IN UNCONTROLLED VOLUME: LOW-POWER, OPEN-PATH, ENCLOSED PATH, UNCONTROLLED CLOSED-PATH, etc.

LABORATORY & FIELD EXPERIMENTAL VALIDATIONS FOR AN INSTRUMENT WITH A KNOWN *k*-FUNCTION

Developed from HITRAN & validated in the lab	k-function for a known instrument, LI-7700	Developed from HITRAN & validated in the lab	Properly designed IRGAs are different from laser		
180 Verification of temperature effects	к-surface p5 p2 p1	282 Verification of water / pressure effects	1.6 Actual Example: LI-7500 DS 3000 ppm		

Implications for CH4

Н	LE	WPL Terms		Spectroscopic Effects				
W m⁻²	W m⁻²	WPLH mg m ⁻² h ⁻¹	WPLLE mg m ⁻² h ⁻¹	Temperature mg m ⁻² h ⁻¹	Water Vapor mg m ⁻² h ⁻¹	Contrib mg m ⁻² h ⁻¹	oution to final umol m ⁻² s ⁻¹	flux value % of flux
				(≈0.31xWPLH)	(≈o.41xWPLLE)			
0	0	0.00	0.00	0.00	0.00	0.00	0.000	0
50	50	0.61	0.13	0.19	0.05	0.24	0.004	8
50	200	0.61	0.51	0.19	0.21	0.40	0.007	13
50	400	0.61	1.03	0.19	0.42	0.61	0.011	20
200	50	2.46	0.13	0.76	0.05	0.81	0.014	27
200	200	2.46	0.51	0.76	0.21	0.97	0.017	32
200	400	2.46	1.03	0.76	0.42	1.18	0.021	39
400	50	4.92	0.13	1.52	0.05	1.58	0.027	53
400	200	4.92	0.51	1.52	0.21	1.73	0.030	58
400	400	4.92	1.03	1.52	0.42	1.94	0.034	65

NOTE ON BROAD-BAND NDIR IRGAs

• The same fundamental spectroscopic effects have different impact on measurements by a properly designed broad-band instruments such as in NDIR IRGAs

Examples above show typical calibration curves for two models, LI-7500RS and LI-7500DS, determined by using a full set of calibration gases at each specific temperature

• All the curves on each plot overlay each other well, showing that the calibration is consistent across the nearly 70 °C temperature range

Such data are collected for each individual instrument as a part of routine factory calibration

SUMMARY OF EQUATIONS & CORRECTIONS FOR ANY INSTRUMENT OR GAS SPECIE

Application	Flux	Raw Covariance	Dilution by H₂O or any other dilutor	Thermal expansion & contraction	Pressure expansion & contraction	Spectr.	HOT
<i>Any instrument</i> No spectroscopic effects, WPL	$F_c =$	$\overline{w'\rho'_c}$ +	$\mu \frac{\overline{\rho_c}}{\overline{\rho_d}} \overline{w' \rho_v}' +$	$\left(1+\mu\frac{\overline{\rho_v}}{\overline{\rho_d}}\right)\frac{\overline{\rho_c}}{\overline{T}}\overline{w'T'}-$	$\bar{\rho_c} \left(1 + \mu \frac{\overline{\rho_v}}{\overline{\rho_d}} \right) \frac{\overline{w'p'}}{\overline{p}}$	absent	absent
<i>Any instrument</i> Any spectroscopic effects	$F_c =$	$\overline{k} w' \rho'_{cm} +$	$\overline{k} \ \mu \frac{\overline{\rho_{cm}}}{\overline{\rho_d}} \overline{w' \rho_v}' +$	$\bar{k}\left(1+\mu\frac{\overline{\rho_{v}}}{\overline{\rho_{d}}}\right)\frac{\overline{\rho_{cm}}}{\overline{T}}\overline{w'T'} - $	$\overline{k}\overline{\rho_{cm}}\left(1+\mu\frac{\overline{\rho_{v}}}{\overline{\rho_{d}}}\right)\frac{\overline{w'p'}}{\overline{p}}$	$+\overline{w'k'}\overline{\rho_{cm}}$	$+\overline{w'k'\rho'_{cm}}$
Any instrument Spectroscopic effects of <i>T</i> , ρ_{v} , <i>p</i>	$F_c =$	$\overline{k} w' \rho'_{cm} +$	$\left(\overline{k} + \frac{\overline{\rho_d}}{\mu} k_{\rho_v}\right) \mu \frac{\overline{\rho_{cm}}}{\overline{\rho_d}} \overline{w'\rho_v'} + $	$\left(\overline{k} + \frac{\overline{T}}{1 + \mu \overline{\frac{\overline{\rho_v}}{\overline{\rho_d}}}} k_T\right) \left(1 + \mu \frac{\overline{\rho_v}}{\overline{\rho_d}}\right) \frac{\overline{\rho_{cm}}}{\overline{T}} \overline{w'T'} - $	$(\bar{k} - \frac{\bar{p}}{1 + \mu \frac{\bar{\rho}_v}{\bar{\rho}_d}} k_p) \overline{\rho_{cm}} \left(1 + \mu \frac{\bar{\rho}_v}{\bar{\rho}_d}\right) \frac{w'p'}{\bar{p}}$	unfolded into other terms	$+\overline{w'k'\rho'_{cm}}$
<i>LI-7700</i> Spectroscopic effects of <i>T</i> , ρ_{v} , <i>p</i>	$F_c =$	$\overline{k_{7700}} \overline{w' \rho'_{cm}} +$	$\left(\overline{k} + (1 - 1.46 \overline{x_v}) \alpha_v \overline{p_e} k_{7700 p_e}\right) \mu \frac{\overline{\rho_{cm}}}{\overline{\rho_d}} \overline{w' \rho_v}' +$	$\left(\overline{k} + (1 - x_v)\overline{T}k_{7700T} + \overline{x_v}\left(M_{v7700} - \overline{k}\right)\right)\left(1 + \mu \frac{\overline{\rho_v}}{\overline{\rho_d}}\right)\frac{\overline{\rho_{cm}}}{\overline{T}}\overline{w'T'} - $	neglected	unfolded into other terms	neglected

Details in the main text and in the supplements to: Burba, G., Anderson, T. and Komissarov, A., 2019. Accounting for Spectroscopic Effects in Laser-based Open-path Eddy Covariance Flux Measurements. Global Change Biology, 25(6), pp. 2189-2202. DOI: 10.1111/gcb.14614