

Satellite-derived Indian methane emission sources with TROPOMI retrievals and WRF-GHG modelling framework

D.Pillai¹, M.Deshpande¹, A. Mishra¹, J.Marshall², C.Gerbig², O.Schneising³, and M. Buchwitz³

¹ Indian Institute of Science Education and Research, Bhopal, India

² Max Planck Institute for Biogeochemistry, Jena, Germany

³ Institute of Environmental Physics, University of Bremen, Germany

Creative Commons Attribution 4.0 International License

Background and Motivation

- Methane is the second largest anthropogenic contributor to climate change after CO_{2.}
- Complexity in CH₄ sources: Anthropogenic and natural sources are uncertain and the processes are often co-located.
- Trends in annual growth rate: To date, there is no consensus on what caused the levelling off(in1990s), renewed growth, or accelerating rise (after 2015) of CH_4 .
- Short life-time of CH₄ (~10 y) makes it an interesting target for mitigating near-term climate change (by reducing radiative forcing on fast time-scales)- "lowhanging fruit"

(www.esrl.noaa.gov/gmd)

Indian Methane emissions are largely comprised by anthropogenic sources

- Largest contribution from ruminants, followed by waste water, fossil fuels and rice paddies. Range of contributions differ significantly from inventory to inventory
- Wetland (natural source) emission contribution range from \sim 0.5 to 9% depending on the wetland model used.
- Rice and biomass burning emissions exhibit seasonality
- Independent emission verification: No sufficient surface measurements available

Good news is the expansion of satellite fleet for observing • • Methane at high precision and accuracy

Our approach uses TROPOMI observations to improve emission inventories

Our approach uses TROPOMI observations to improve emission inventories Improved emissions Simulated concentrations observed concentrations Optimization TROPOMI/WFMD XCH₄ 2018 to minimize mismatch WRF-Chem-GHG transport model XCH₄ [ppb] 1730 1747 1764 1781 1798 1815 1832 1849 1866 1883 1900 Schneising et al., 2019 Prior Estimates

Our approach uses TROPOMI observations to improve emission inventories Improved emissions WRF-GHG Model domain Simulated concentrations showing terrain height observed concentrations 40°N Optimization 8000 to minimize 6000 35°N mismatch 4000 3000 30°N 2000 1800 WRF-Chem-1400 25°N GHG 1200 transport model 1000 20°N 800 600 15°N 400 200 10°N 100 2 5°N Prior Estimates

70°E

75°F

80°F

85°F

90°F

95°F

100°F

Our approach uses TROPOMI observations to improve emission inventories Improved emissions WRF-GHG Model Configuration Simulated concentrations observed concentrations Optimization Model, Version WRF-Chem-GHG, 3.9.1.1 to minimize mismatch Horizontal resolution 10 km x 10 km **Temporal resolution** 1 hour WRF-Chem-3080 x km² Domain area GHG transport model Vertical grid 40 layers Initial tracer & Met. CAMS, ERA5 fields Prior fluxes EDGAR, GFAS, and **WetCHARTs** Prior Estimates

Model predictions of atmospheric XCH₄ after applying ••• temporal sampling and averaging kernel

WRF XCH₄ averaged for November 2018

Model predictions of atmospheric XCH₄ after applying ••• temporal sampling and averaging kernel

S5P XCH₄ averaged for November 2018

WRF XCH₄ averaged for November 2018

Separating tracers suggests possible overestimated anthropogenic contribution over Indian region

Anthropogenic contribution for November 2018

Optimisation of WRF model emission is performed by minimising the cost function

Model-Observations November 2018

Optimisation of WRF model emission is performed by minimising the cost function

TROPOMI derived anthropogenic Methane emissions in comparison with other estimates

Top-down quantification using satellite observations

• Our estimation of Indian methane emission is consistent with Ganesan et al., 2017.

Bottom-up quantification

Our current estimations are ~40% lower than that of EDGAR and ~10% higher than 2010 BUR report submitted to UNFCCC.

		Indian Methane emissions, Tg yr-1
EDGAR v4.3.2, 2012	Bottom-up approach	31.0
India's BUR (Biennial Update Report to its National Communications), 2010	Bottom-up approach	19.8
Ganesan et al., Nature Communications, 2017	Top-down approach, GOSAT, surface and aircraft observations	22.0*
This study	Top-down approach, TROPOMI observations	22.0** 22.9** (including biomass burning emissions)
	*over the period 2010–2015 **November 2018	

Takeaways

- Robust evaluation of national Methane emissions is necessary to improve the confidence in India's CH₄ inventory.
- TROPOMI XCH₄ observations pave the way for improving knowledge of methane emissions over India through inverse analyses. However, surface measurements are indispensable.
- A high-resolution atmospheric transport modeling system is required to simulate data from these platforms and to infer fluxes.
- By minimising the cost function, we find a better agreement by scaling down the EDGAR emissions by a factor of $\sim 40\%$
- Future task: further refinement of inverse method by better taking into account of error characterisation (e.g transport error) of the solution

For questions/comments, please feel free to contact

Email: dhanya@iiserb.ac.in

Greenhouse gas Modeling and Applications Group

IISER Bhopal Indian institute of science education and research bhopal

Copyright License

