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Background and Motivation

- Methane is the second largest anthropogenic
contributor to climate change after CO;.
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« Complexity in CHa4 sources: Anthropogenic and natural
sources are uncertain and the processes are often co-
located.

« Trends in annual growth rate: To date, there is no
consensus on what caused the levelling off(in1990s),
renewed growth, or accelerating rise (after 2015) of
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« Short life-time of CH4 (~10 y) makes it an interesting
target for mitigating near-term climate change (by
reducing radiative forcing on fast time-scales)- “low-

hanging fruit” ( M\
A
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Indian Methane emissions are largely comprised
by anthropogenic sources
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« Largest contribution from ruminants, followed by waste water, fossil fuels and rice
paddies. Range of contributions differ significantly from inventory to inventory

« Wetland (natural source) emission contribution range from ~0.5 to 9% depending
on the wetland model used.

* Rice and biomass burning emissions exhibit seasonality

. Independent emission veriﬁcativon: Ne sufficient surface measurements available
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Good news is the expansion of satellite fleet for observing
Methane at high precision and accuracy
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Our approach uses TROPOMI observations to improve

emission inventories

Simulated concentrations

Improved
emissions

T

WRF-Chem-
GHG
transport model

Optimization
to minimize

mismatch

—

observed concentrations
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Our approach uses TROPOMI observations to improve

emission inventories Improved

emissions

T

Optimization §,
to minimize %
mismatch

Simulated concentrations [

TROPOMI/WFMD XCH,4 2018

WRF-Chem-
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transport model
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Schneising et al., 2019




Our approach uses TROPOMI observations to improve
emission inventories

WRF-GHG Model domain

Improved
emissions

T

showing terrain height Simulated concentrations 4 —

40°N —|

35°N —

30°N — f

20°N —

15°N

10°N

5°N —

8000
6000
4000
3000
2000
1800
1400
1200
1000
800
600
400
200
100

70°E 75°E 80°E 85°E 90°E 95°E 100°E

\{ransport model #

Optimization
to minimize
mismatch

WRF-Chem- \ §
GHG

observed concentrations

|||||
BBBBBB



Our approach uses TROPOMI observations to improve

emission inventories

WRF-GHG Model Configuration

Simulated concentrations

Improved
emissions

P,

Model, Version WRF-Chem-GHG, 3.9.1.1

Horizontal resolution 10 km x 10 km
Temporal resolution 1 hour o '

_ ¢ WRF-Chem- \ §
Domain area 3080 x km2 GHG
Vertical grid 40 layers \{ransport modl g
Initial tracer & Met. CAMS, ERAS5
fields
Prior fluxes EDGAR, GFAS, and

WetCHARTs
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Model predictions of atmospheric XCH4 after applying ©
temporal sampling and averaging kernel
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WRF XCH4 averaged for November 2018
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Model predictions of atmospheric XCH4 after applying
temporal sampling and averaging kernel

S5P XCH4 averaged for November 2018
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Separating tracers suggests possible overestimated
anthropogenic contribution over Indian region
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Optimisation of WRF model emission is performed by ~ ®

minimising the cost function

Model-Observations November 2018
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[ Before Optimisation

Optimisation design [ After Optimisation

«  WRF tracers (contributions) are separated to
understand how each one contributes
independently

2000 -

1500 |-

- Observation vector: All available good S5P
column observations for November 2018

- State vector: Scaling factors for monthly
averaged exchange fluxes for each political
states of India 500 -

- Transport error in WRF is ignored 200 150 100
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Optimisation of WRF model emission is performed by ~ ®

minimising the cost function

Observations Simulations, before opt. Simulations, after opt.
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TROPOMI derived anthropogenic Methane
emissions in comparison with other estimates

Top-down quantification using

satellite observations

« QOur estimation of Indian
methane emission is consistent
with Ganesan et al., 2017.

Bottom-up quantification
« QOur current estimations are

~40% lower than that of EDGAR
and ~10% higher than 2010
BUR report submitted to
UNFCCC.

EDGAR v4.3.2, 2012

India’s BUR (Biennial
Update Report to its
National Communications),
2010

Ganesan et al., Nature
Communications, 2017

This study

Bottom-up approach

Bottom-up approach

Top-down approach,
GOSAT, surface and
aircraft observations

Top-down approach,
TROPOMI
observations

*over the period 2010-2015 (

**November 2018

Indian Methane
emissions, Tg yr-1
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22.0*

22.0**

22.9** (including
biomass burning
emissions)
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Takeaways

* Robust evaluation of national Methane emissions is necessary
to improve the confidence in India’'s CH4 inventory.

« TROPOMI XCHs observations pave the way for improving
knowledge of methane emissions over India through inverse
analyses. However, surface measurements are indispensable.

* A high-resolution atmospheric transport modeling system is
required to simulate data from these platforms and to infer
fluxes.

* By minimising the cost function, we find a better agreement by
scaling down the EDGAR emissions by a factor of ~40%

« Future task: further refinement of inverse method by better
taking into account of error characterisation (e.g transport
_. error) of the solution

For questions/comments,

}9[6(156 fee(free to contact

Email: dhanya@iiserb.ac.in

Greenhouse gas Modeling
and Applications Group
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