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L Outline and Motivation Gt

The factors recently highlighted by Van Allen Probes to affect the efficiency and
control the predominance of the precipitation or acceleration regimes by chorus and
hiss to be included into the long scale wave-particle interaction models:

- whistler-mode wave amplitude distribution with latitude determines the regime
of scattering or acceleration;

- wave normal angle distribution: existence of the significant oblique whistler
population’s influence on electron scattering;

- chorus frequency dependence on latitude was supposed to be constant,
however, Van Allen Probes showed that the relative wave frequency goes down
with latitude from 0.35 f_, at the equator to ~0.1 f__  at 20 degrees, decreasing the
electron scattering resonance latitude from ~30 degrees to ~15 degrees;

- @, /4 value affects the energy and pitch-angle scattering rates and also
sufficiently influences the electron scattering resonance latitudes.
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The chorus model
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The chorus model
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The chorus model
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Distribution of obliquity factor Q describing the MLT-averaged pitch-angle diffusion rates for three electron
amount of very oblique LB chorus waves based on energies and (a) L = 4:5 with the Q model given by Eq. (4), (b)
Van Allen Probes (A < 20) and Cluster (L > 20) L =4:5and Q=0, (c) L = 6:0 with the Q model given by Eq. (4),
measurements, shown by solid colors for three MLT (d) L = 6:0 and Q = 0 (Agapitov et al. 2018).

(indicated in the panels) sectors and two L-shell

ranges (Agapitov et al. 2018).



Changing the regime of wave-particles interactions
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plasma trough for the same geomagnetic activity ranges (Agapitov et al., 2019).



(a) Variation of a,./£2,, with AE in the day (red) and night (black)
sectors;

(b) Latitude of cyclotron resonance I, swith 1 MeV electrons near

1 their loss-cone (I s for constant a,./€2,, values of 4.3 and 3.5 In
{ the day and night sectors, respectively, are shown by dashed

lines);

(c) RMS chorus wave amplitude in the vicinity of the geomagnetic

equator, where most of the chorus-driven electron energization
occurs;

| (d) RMS chorus wave amplitude at A 5 (for 1 MeV electrons)

| where chorus-driven scattering leads to precipitation in the
atmosphere;

(e) chorus-driven energy scattering rate D¢ for measured

Ol €2es el €2 (SOl curves), the dotted black curve showing
Dee for a constant w,./(2,, =3.5 in the night sector;

(f) Same as (e) for the chorus-driven pitch-angle scattering rate
D,, near the loss-cone;

. f/fce from RBSP ——. f{fce=0.35
@,/0, from RBSF w /., =45 .

—— f/fce from RBSP -~ J/fce=0.35 (Agapitov et al., 2019).
w /0 from RBSP w, /0 =3.5
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PSD dynamics %
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The enhancement of 10-200 keV particles is coursed by the injection. 107 | o S
The enhancement of 0.5-2 MeV electrons is local with a maximum at 001 o010 100 S
L*=4. The acceleration time scale can be estimated from the inbound mneray [Mev] S

and the following outbound orbits as ~2 hours (Agapitov et al., 2019). i



Wave dynamics and effects for particles
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The HISS model
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(a-e) Distribution of hiss RMS amplitude B from EMFISIS HFR in the plasmasphere or in plumes, for the same S
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S The HISS model €
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(a) Distribution of hiss wave RMS amplitude with L-shell. Amplitudes larger than half the maximum are shown by
bars. The plasmapause is indicated by a solid red curve. (b) RMS hiss wave power at L=2.6, 3.0, and 3.5 (the
blue, green, red curves respectively). Dotted curves show nightside hiss amplitudes. (c) Hiss wave frequency
(weighted by wave power). (d) Mean w /Q atl=2.6 (blue), L=3.0 (green), and L=3.5 (red). (e) Latitude of
cyclotron resonance with 1-MeV electrons near the loss-cone ablue), L=3.0 (green), and L=3.5 (red). (f) Lifetime of

1-MeV electrons at L = 3.0 estimated in the (wm/ch, “’pe/ﬂce) domain t L=2.6 (for B _

10 pT (Agapitov et al.,
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2020).
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Van Allen \)
Probes

(a) Distribution of latitude for cyclotron
resonance between 1-MeV electrons and
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AE<50 nT 50<AE< 150 nT
1(b)

The HISS model
150<AE<D00 nT  200<AE<T000 nT AE>1000 nT
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(a-e) Variation of w, A . as a function of L in different MLT sectors (blue: 00-O6MLT, green: 06-12MLT, red:
12-18MLT, black: 18-24 MLT) and w, A1 based on the statistical plasma density model from (Ozhogin et
al., 2012) is shown by dotted black curves. (f-]) 1-MeV electron lifetimes calculated with the actual «, A,
(black solid curves) or making use of the model by Ozhogin et al.,(2012)(dotted curves). Exact lifetime values
obtained from full numerical calculations are shown by crosses. (k-0) ratio 7/70Ozh (Agapitov et al., 2020)
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The HISS model — 1 MeV electrons lifetime

(a) 1-MeV electron lifetime of 1 MeV electrons in
the L* and AE-index domain, calculated from Daa
distributions obtained from Van Allen Probes
measurements. (b) Corresponding 1MeV electrons
lifetime parametrization (Agapitov et al., 2020).
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Daily-averaged, differential flux at L = 4.65 for 467-keV electrons.

Exponential decays identified by the automated algorithm are
highlighted in red with the calculated decay (e-folding) times | 78
indicated, in days (from Claudepierre et al., (2020a) )
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(c-d) Comparison of 77MeV from the model (blue (9) Ayeraged measur.ed lifetime of 1-MeV electlrons
obtained by Claudepierre et al., (2020a) (red circles

circles) with direct estimations (red crosses) from

MagEIS measurements of electron flux at L*=

and 3.75, respectively (Agapitov et al., 2019). curve) (Agapitov et al.,

Claudepierre et al., (2020a) based on Van Allen Probes showing the mean, bars showing two standard deviations,
2.75. 3.25 and red zone the full variation) and model of r7MeV (blue

2019).
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S Conclusions

Based on the new findings we provide the dynamic chorus wave model (based on the Van Allen
Probes and Cluster VLF observations) for processing the wave-particle interactions and the electron
populations dynamics in the outer radiation. We show that taking into account that w,, 11 . in the
night/morning sector goes down from 3.5 to ~1.5 during geomagnetic activity enhancement leads to
(1) decrease the latitudes of electron cyclotron resonance with chorus waves down to ~15°

Increasing effective wave amplitudes and D ;
(2) increase Dg leading to fast local acceleration at L x ~3.5 — 4.5 with the time scales 2-3

hours.

The effects from w, A1, variations indicate the needs to map directly the dynamics of the
scattering rates, i.e. naturally involve all the discussed effects into the models .

The successful use of this approach we demonstrate providing the parameterization of MeV
electrons lifetimes due to hiss-driven pitch-angle scattering inside the plasmasphere. The
plasma- and wave-based lifetimes are in good agreement with recent measured electron lifetimes
from the Van Allen Probes (Claudepierre et al., 2020a) in the region of efficient electron scattering by
hiss waves (from L*~2.6 up to the plasmapause) between L*=2.6 and L*=3.9 for AE = 0 up to 400 nT
at least, and can explain the behavior of 1-MeV electrons in the L* range from 2.6 to 3.5-3.9, and it
can be used as a realistic estimation of hiss contribution to electron precipitation rates above L* =

3.8.
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