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Literature

Parkinson & Comiso (2012): J

Downward trend increases vulnerability of STE to seasonal shocks

I

Vavrus (2004), Winton (2013), Stuecker et al. (2018), McGraw (2019): J

Feedback loops between climate variables, test them with Granger Causality tests

Stroeve et al. (2012): So far:
Recovering of SIE after extreme Very sparse literature on VARs and
minima climate-system.

Our Contribution :

Amplification in the long-run: estimating and extrapolating the feedback process with Vector
Autoregressions.
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Motivation

® The minimum extent of arctic sea ice (SIE) in 2019 ranks
second-to-lowest in history and is trending downward.

® There is an immediate need for flexible statistical modeling
approaches that both explain endogenously the trend of SIE
and permit its extrapolation to generate a long-run forecast.

® The VARCTIC is a compromise between fully
structural /deterministic modeling and purely statistical
approaches.

® It models dynamic interactions between some key variables
without the need to specify a complete climate model, which
can be useful in many situations.

® We use it to assess the importance of different internal
variability mechanisms in amplifying SIE’s response to CO4
forcing.
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CMIP5 & CMIP3 Projections

Stroeve et al. (2012):
dispersion is huge and the ensemble mean does not track recent observations so
well.
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Jahn et al. (2016): narrowing the dispersion to roughly 20 years J

The VARCTIC can help pointing out understated mechanisms
responsible for the discrepancy. s




In Short

® We run an 8 variable Bayesian Vector Autoregression (VAR).

® Qur ”business as usual” completely unconditional forecast has
SIE hitting 0 in September by the 2060’s.

® Unsurprisingly, C'Os is shown to be the main driver of the
long-run evolution of SIE and conditioning on different RCPs
can change the SIE = 0 date dramatically (2050’s under RC' P
8.5, never under RCP 2.6)

® We propose two ways of evaluating how the endogenous
response of both sea ice albedo and thickness amplify the
reaction of SIE to COs.

® Qur results suggest that the thickness amplification channel
could be of greater importance than that of albedo.
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A look at the Raw Data

® Raw data y;*" is highly seasonal, and seasonality is only of
second interest here as we wish to focus on phenomena that
impact all seasons.

Figure: Raw Data: 18 Original Variables
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A more productive look at the Data

® We take out seasonality with dummies.

® We later consider structural time series model-based seasonality
extraction as a robustness check.

Figure: Deseasonalized Series: 8 Variables
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Which Variables Did We Choose?

® Data Sources: We mostly follow Stroeve & Notz (2018) and regarded
NSIDC, NOAA and the PIOMAS project among others as reliable data
providers.

® Variable selection is based on compiling a sample, representing both
external forcings and internal variability

® The chosen variables and their interactions with Arctic sea ice are all
well-described in Meier et al. (2014).

Table: Benchmark VARCTIC

Variable | Data Source

Sea Ice Extent NSIDC Sea Ice Index

CO2o NOAA/ESRL Global Trend

Total Cloud Cover NCEP/NCAR 40-year Reanalysis Project
Sea Surface Temperature Met Office Hadley Centre

Air Temperature NCEP/NCAR 40-year Reanalysis Project
Precipitation NOAA/OAR/ESRL

Thickness PIOMAS

Sea Ice Albedo MERRA-2

® If these variables constitute a diverging dynamic system of equations, the
highest root will be >1.
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VARs

® Let y; stack our 8 variables of interest, then

P
Ay, =To+ Y Ty, , +e, (1)
p=1
® Each of these variables is predicted by its own lags and lags of
the M — 1 remaining variables.
® The matrix A characterizes how the M different variables
interact contemporaneously.
® The structural shocks/anomalies/disturbances are mutually
uncorrelated disturbances with mean zero:

Er = [817,5, ,EM7t] ~ N(O, IM) .
® An estimable version of the above is the reduced-form VAR
P
Yy =c+ Z Ppysp + ur, (2)
p=1

where ¢ = A7, ®, = A~'V,, and u; are plain residuals. 0/24



Once the VAR is estimated, can do many things

® Get an unconditional long-run forecast
e Evaluate conditional forecasts based on different CO9 scenarios

® Once the structural VAR is identified, we can look at how the
dynamic system responds to certain shocks of interest, like C'Oo
and temperature.

® Evaluate how certain channels amplify the response of SIE to

CO2

® A more in-depth explanation of those procedures as well as
implementation details can be found in the paper.
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Forecast obtained by iterating the VAR forward

Figure: Trend Sea Ice Extent, adjusted for September level
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Impulse Response Functions in Detail

® The impulse response function of a variable m to a one
standard deviation shock of €5, is

IRF(m — m,h) = E(ymz

Yt Etm = Ocp ) — E(Ymt|Yt, €0m = 0).

® In a linear VAR with one lag (P = 1), the IRF of all variables
is computed using

IRF(in — m,h) = U"A ey

where ey, is vector with o, in position m and zero elsewhere.

® This means we are looking at the individual effect of €, while
all other structural disturbances are shut down.

® For this paper’s research question: how does variable z’s
channel contribute to IRF(m — m,h) — formal statistical
inquiry of the amplification hypothesis
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How to obtain A: the Ordering

® External Forcings

1. COs:

most exogenous variable; not to be impacted by any other variable

contemporaneously; rising levels due to anthropogenic stimulus (Dai et al.

(2019), Notz and Stroeve (2016))
® Internal Variability
® Fast Moving Variables

2.

4.

Total Cloud Cover:

— influencing the heat content of the surface
Precipitation:

— can cause immediate changes in temperature
Air Temperature

® Slow Moving Variables

5.

Sea Surface Temperature

— lagged effect of both temperature series on 2. & 3.

Sea Ice Extent

— we assume an immediate impact on thickness and albedo
Thickness:

— crucial determinant of the albedo effect

Sea Ice Albedo
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IRFs: Response of Sea Ice Extent to different shocks

CO5 shocks have a permanent downward effect — 2020 C'Oo
anomaly could have a lasting positive impact on SIE — unless
emissions pick up more strongly after the lockdown /recession.
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Through which channels does COy impact SIE?
IRF decomposition
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Through which channels does COy impact SIE?
Cumulative Impact

e Temperatures obviously matter.
® Thickness & Albedo together can double cumulative impact.
® Thickness’ response seems much more important than Albedo.
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How do Air Temperature shocks impact SIE?
IRF decomposition

e Without the dynamic response of Albedo, the effect dies out
really quickly (-0.005 after 5 months rather than -0.03)
® Thickness contributes, but to a lesser extent this time.
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How do Air Temperature shocks impact SIE?
Cumulative Impact

® Cancel both Albedo & Thickness feedback and you get a much
milder response that stabilizes quickly.
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Identifying systematic transmission channels of CO,

Scenarios

1000
900
800
700
600

500

400

300 L 1 1 I ]
1980 2000 2020 2040 2060 2080 2100

s VARCTIC 8: CO2 lized Raw Data: CO2 inistic Component: CO2 === RCP 2.6: CO2 mmm= RCP 8.5: CO2
RCP 6.0: CO2

19 /24



Identifying systematic transmission channels of CO,
Forecasts Conditional on Different RCPs

-1 1 1 1 ]
1980 2000 2020 2040 2060 2080 2100
= VARCTIC 8 SIE —— Deseasonalized Raw Data: SIE
= Deterministic Component: SIE === SIE conditional on CO2 under RCP26
== SIE conditional on CO2 under RCP85 SIE conditional on CO2 under RCP6
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Identifying systematic transmission channels of CO,

Decomposing Conditional Forecasts under RCP 8.5

-2
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—— Deseasonalized Raw Data: SIE = Deterministic Component:
== SIE conditional on CO2 under RCP85 ~ SEcondiions on G5 unde RGPS - constant Thckness & ALBEDO
= SIE condional on GO undor RGPS - constant ALBEDO

Thought experiment:
stopping both SIE albedo and thickness from decreasing further would
postpone STE < 1 by 10 years — under RCP 8.5.
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Identifying systematic transmission channels of CO,

Decomposing Conditional Forecasts under RCP 6
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SIE conditional on CO2 under RCP6. ===+ SIE conditional on CO2 under RCPG - constant Thickness & ALBEDO
=+« SIE conditional on CO2 under RCPS - constant ALBEDO

Also roughly by 10 years under RCP 6. J
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Robustness Checks

® We consider many robustness checks

® We consider de-seasonalizing the data using stochastic trends to
allow for potentially evolving seasonality.

® We report results with much looser priors
® We also consider alternative orderings

® We also consider a VAR with 18 variables, covering several
measurements of long- & short-wave radiation

® We see the impact of upper-ocean heat to be covered by SST

® [n all instances, results remain unchanged.
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Conclusion

Using a macroeconometric model estimated directly on the
observational record, we find that J

® The median scenario is SIE=0 in September around 2060;

® (O anomalies have permanent effects on SIE, which are in
part to their a mplification by thickness and albedo’s responses;

® The concerted action of SI albedo and thickness feedback
amplifies STE’s response to CO», likely bringing forward the
disappearance of SIE by at least 20 years.
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