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Literature

Parkinson & Comiso (2012):
Downward trend increases vulnerability of SIE to seasonal shocks

↓

Vavrus (2004), Winton (2013), Stuecker et al. (2018), McGraw (2019):
Feedback loops between climate variables, test them with Granger Causality tests

↓
Stroeve et al. (2012):

Recovering of SIE after extreme
minima

So far:
Very sparse literature on VARs and

climate-system.

Our Contribution :
Amplification in the long-run: estimating and extrapolating the feedback process with Vector

Autoregressions.
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Motivation

• The minimum extent of arctic sea ice (SIE) in 2019 ranks
second-to-lowest in history and is trending downward.

• There is an immediate need for flexible statistical modeling
approaches that both explain endogenously the trend of SIE
and permit its extrapolation to generate a long-run forecast.

• The VARCTIC is a compromise between fully
structural/deterministic modeling and purely statistical
approaches.

• It models dynamic interactions between some key variables
without the need to specify a complete climate model, which
can be useful in many situations.

• We use it to assess the importance of different internal
variability mechanisms in amplifying SIE’s response to CO2

forcing.
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CMIP5 & CMIP3 Projections

Stroeve et al. (2012):
dispersion is huge and the ensemble mean does not track recent observations so

well.

 
Jahn et al. (2016): narrowing the dispersion to roughly 20 years

The VARCTIC can help pointing out understated mechanisms
responsible for the discrepancy.
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In Short

• We run an 8 variable Bayesian Vector Autoregression (VAR).

• Our ”business as usual” completely unconditional forecast has
SIE hitting 0 in September by the 2060’s.

• Unsurprisingly, CO2 is shown to be the main driver of the
long-run evolution of SIE and conditioning on different RCPs
can change the SIE = 0 date dramatically (2050’s under RCP
8.5, never under RCP 2.6)

• We propose two ways of evaluating how the endogenous
response of both sea ice albedo and thickness amplify the
reaction of SIE to CO2.

• Our results suggest that the thickness amplification channel
could be of greater importance than that of albedo.
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A look at the Raw Data

• Raw data yraw
t is highly seasonal, and seasonality is only of

second interest here as we wish to focus on phenomena that
impact all seasons.

Figure: Raw Data: 18 Original Variables
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A more productive look at the Data

• We take out seasonality with dummies.

• We later consider structural time series model-based seasonality
extraction as a robustness check.

Figure: Deseasonalized Series: 8 Variables
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Which Variables Did We Choose?

• Data Sources: We mostly follow Stroeve & Notz (2018) and regarded
NSIDC, NOAA and the PIOMAS project among others as reliable data
providers.

• Variable selection is based on compiling a sample, representing both
external forcings and internal variability

• The chosen variables and their interactions with Arctic sea ice are all
well-described in Meier et al. (2014).

Table: Benchmark VARCTIC

Variable Data Source

Sea Ice Extent NSIDC Sea Ice Index
CO2 NOAA/ESRL Global Trend
Total Cloud Cover NCEP/NCAR 40-year Reanalysis Project
Sea Surface Temperature Met Office Hadley Centre
Air Temperature NCEP/NCAR 40-year Reanalysis Project
Precipitation NOAA/OAR/ESRL
Thickness PIOMAS
Sea Ice Albedo MERRA-2

• If these variables constitute a diverging dynamic system of equations, the
highest root will be >1.
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VARs

• Let yt stack our 8 variables of interest, then

Ayt = Ψ0 +

P∑
p=1

Ψpyt−p + εt, (1)

• Each of these variables is predicted by its own lags and lags of
the M − 1 remaining variables.
• The matrix A characterizes how the M different variables

interact contemporaneously.
• The structural shocks/anomalies/disturbances are mutually

uncorrelated disturbances with mean zero:

εt = [ε1,t, ... , εM,t] ∼ N (0, IM ) .

• An estimable version of the above is the reduced-form VAR

yt = c +

P∑
p=1

Φpyt−p + ut, (2)

where c = A−1Ψ0, Φp = A−1Ψp and ut are plain residuals.

ut = [u1,t, ... , uM,t] ∼ N (0, Σu)

with Σu = A−1′A−1 by construction.
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Once the VAR is estimated, can do many things

• Get an unconditional long-run forecast

• Evaluate conditional forecasts based on different CO2 scenarios

• Once the structural VAR is identified, we can look at how the
dynamic system responds to certain shocks of interest, like CO2

and temperature.

• Evaluate how certain channels amplify the response of SIE to
CO2

• A more in-depth explanation of those procedures as well as
implementation details can be found in the paper.
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Forecast obtained by iterating the VAR forward

Figure: Trend Sea Ice Extent, adjusted for September level
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Impulse Response Functions in Detail

• The impulse response function of a variable m to a one
standard deviation shock of εm̃,t is

IRF (m̃→ m,h) = E(ym,t|yt, εt,m̃ = σεm̃)−E(ym,t|yt, εt,m̃ = 0).

• In a linear VAR with one lag (P = 1), the IRF of all variables
is computed using

IRF (m̃→m, h) = ΨhA−1em̃

where em̃ is vector with σεm̃ in position m̃ and zero elsewhere.

• This means we are looking at the individual effect of εm̃ while
all other structural disturbances are shut down.

• For this paper’s research question: how does variable z’s
channel contribute to IRF (m̃→ m,h) → formal statistical
inquiry of the amplification hypothesis
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How to obtain A: the Ordering

• External Forcings
1. CO2:

most exogenous variable; not to be impacted by any other variable

contemporaneously; rising levels due to anthropogenic stimulus (Dai et al.

(2019), Notz and Stroeve (2016))

• Internal Variability
• Fast Moving Variables

2. Total Cloud Cover:
→ influencing the heat content of the surface

3. Precipitation:
→ can cause immediate changes in temperature

4. Air Temperature
• Slow Moving Variables

5. Sea Surface Temperature
→ lagged effect of both temperature series on 2. & 3.

6. Sea Ice Extent
→ we assume an immediate impact on thickness and albedo

7. Thickness:
→ crucial determinant of the albedo effect

8. Sea Ice Albedo
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IRFs: Response of Sea Ice Extent to different shocks

CO2 shocks have a permanent downward effect → 2020 CO2

anomaly could have a lasting positive impact on SIE – unless
emissions pick up more strongly after the lockdown/recession.

14 / 24



Through which channels does CO2 impact SIE?
IRF decomposition

Figure: IRF Decomposition
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Through which channels does CO2 impact SIE?
Cumulative Impact

• Temperatures obviously matter.
• Thickness & Albedo together can double cumulative impact.
• Thickness’ response seems much more important than Albedo.
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How do Air Temperature shocks impact SIE?
IRF decomposition

• Without the dynamic response of Albedo, the effect dies out
really quickly (-0.005 after 5 months rather than -0.03)
• Thickness contributes, but to a lesser extent this time.
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How do Air Temperature shocks impact SIE?
Cumulative Impact

• Cancel both Albedo & Thickness feedback and you get a much
milder response that stabilizes quickly.
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Identifying systematic transmission channels of CO2

Scenarios
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Identifying systematic transmission channels of CO2

Forecasts Conditional on Different RCPs
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Identifying systematic transmission channels of CO2

Decomposing Conditional Forecasts under RCP 8.5

Thought experiment:
stopping both SIE albedo and thickness from decreasing further would

postpone SIE < 1 by 10 years – under RCP 8.5.
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Identifying systematic transmission channels of CO2

Decomposing Conditional Forecasts under RCP 6

Also roughly by 10 years under RCP 6.
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Robustness Checks

• We consider many robustness checks

• We consider de-seasonalizing the data using stochastic trends to
allow for potentially evolving seasonality.

• We report results with much looser priors

• We also consider alternative orderings

• We also consider a VAR with 18 variables, covering several
measurements of long- & short-wave radiation

• We see the impact of upper-ocean heat to be covered by SST

• In all instances, results remain unchanged.
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Conclusion

Using a macroeconometric model estimated directly on the
observational record, we find that

• The median scenario is SIE=0 in September around 2060;

• CO2 anomalies have permanent effects on SIE, which are in
part to their a mplification by thickness and albedo’s responses;

• The concerted action of SI albedo and thickness feedback
amplifies SIE’s response to CO2, likely bringing forward the
disappearance of SIE by at least 20 years.
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