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The precision of numerical orbit integration is crucial in the precise orbit

determination and gravity field recovery, especially in the context of future

satellite gravimetry missions where nanometer or even sub-nanometer-level inter-

satellite measurements are provided by Laser Ranging Interferometer (LRI). To

fully exploit the ultra-high precision of LRI observations by the GRACE Follow-

On (GRACE-FO) and Next Generation Gravity Missions (NGGM), the numerical

integration errors should be controlled at least on the same level of the LRI

noises’, and had better be one-order magnitude smaller than that to fully avoid

their contaminations on the solved-for parameters in the gravity field recovery.

For one-day arc length of orbit integration, however, the currently widely-used

double-precision arithmetic cannot meet above requirements given the nanometer

or even sub-nanometer inter-satellite range measurement precision while is

adequate for the range rate data. The primary cause to this incapability is the

round-off errors accumulation with the increase of integration arc length, which

can be greatly and efficiently tackled by the hybrid-precision orbit integration

technique proposed by this contribution.

The equation of motion for the satellite in the inertial frame can be expressed in

either the Cowell’s formulation as Eq. (1) or the Encke’s formulation Eq. (2),
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𝑅𝐸𝐹 + 𝒂𝑝 𝑡; 𝒓, ሶ𝒓 (2)

where 𝒓, ሶ𝒓 and ሷ𝒓 are the vectors of satellite position, velocity and acceleration, 𝜇
is the product of the Earth mass and gravitational constant, and 𝒂𝑝 𝑡; 𝒓, ሶ𝒓 is the

perturbing forces. The Eq. (2) is obtained by subtracting the central gravitational

force term, evaluated at the un-perturbed reference orbit 𝒓𝑅𝐸𝐹, from the Eq. (1),

resulting the differential acceleration δ ሷ𝒓 between the total true acceleration ሷ𝒓 and

reference acceleration ሷ𝒓𝑅𝐸𝐹.

Without loss of generality, the numerical orbit integration procedure can be

divided into two steps, namely the increment calculation step as Eq. (3) and the

orbit propagation step Eq. (4), for example, in the Cowell’s formulation,

𝑷𝑛,𝑛+1 = σ𝑖=0
𝐾−1𝛼𝑖 ሷ𝒓𝑛−𝑖,    𝑽𝑛,𝑛+1 = σ𝑖=0

𝐾−1𝛽𝑖 ሷ𝒓𝑛−𝑖 (3)

𝑷𝑛+1 = 𝑷𝑛 + ℎ2𝑷𝑛,𝑛+1,    𝑽𝑛+1 = 𝑽𝑛 + ℎ𝑽𝑛,𝑛+1 (4)

where 𝛼𝑖 and 𝛽𝑖 are integration coefficients of the Kth-order integrator, 𝑷𝑛,𝑛+1
and 𝑽𝑛,𝑛+1 are integration increments which propagate the state vectors 𝑷𝑛 and

𝑽𝑛 from epoch 𝑡𝑛 to 𝑡𝑛+1 with integration step size h. For the Encke’s

formulation, the increment calculation is the same as Eq. (3) except that ሷ𝒓 is

replaced by δ ሷ𝒓 and thus δ𝑷𝑛,𝑛+1 and δ𝑽𝑛,𝑛+1 are utilized, while the orbit

propagation step reads as Eq. (5) given the analytical reference orbit at 𝑡𝑛+1,

𝑷𝑛+1 = 𝑷𝑛+1
𝑅𝐸𝐹 + δ𝑷𝑛 + ℎ2δ𝑷𝑛,𝑛+1,    𝑽𝑛+1 = 𝑽𝑛+1

𝑅𝐸𝐹 + δ𝑽𝑛 + ℎδ𝑽𝑛,𝑛+1 (5)

Numerical Results and Analysis

Based on above two-step decomposition, we find that the round-off errors basically occur in the

least time-consuming orbit propagation step while the more time-demanding increment

calculation step is less sensitive to the round-off due to its small numerical magnitude. Therefore,

in the hybrid-precision (HB) orbit integration technique, we perform the increment calculation

Eq. (3) in the double-precision arithmetic (DB) while the whole orbit propagation step Eq. (4) or

(5) in the quadruple-precision arithmetic (QD), which benefits from the more significant digits

of the QD than the DB but not at the expanse of computational efficiency [1].

The computational efficiency and relative precision of the hybrid-precision orbit integration

technique are evaluated in terms of the Cowell’s (COW) and the Encke’s formulation, where the

reference orbit of the latter is chosen as either the osculating (OSC) or the best-fit (BFT) one as

proposed by [2].
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Fig. 1. CPU execution times of double-, hybrid- and quadruple-precision arithmetic for the integration of

one-day orbit arc in the Cowell’s formulation by the 8th-order Adams-Cowell integrator with 1-second

integration step size under different gravity model sizes.

Figure 1 gives the CPU execution time cost for the comparisons of total and individual parts of

the orbit integration process by the DB, HB and QD arithmetic in the Cowell’s formulation for

one-day arc length under different gravity field model sizes, which indicates that the force model

evaluation part Eq. (1) takes the most of the total time over 99% and should be performed in the

DB considering that the QD is at least 5 to 10 times less efficient than the DB for current

computer processors. Therefore, the proposed HB has the same efficiency as the DB since it only

utilizes the QD at the least time-consuming orbit propagation step Eq. (4) or (5).

Relative Precisions are assessed for the HB and DB in both Cowell’s (DB-COW, HB-COW) and

Encke’s formulations (DB-OSC, DB-BFT, HB-OSC, HB-BFT), where the integrated inter-

satellite range and range rate are compared with the ‘true’ values generated by the QD-COW [1].

It is shown in the Table 1 that the HB methods significantly outperform their DB

counterparts in both Root Mean Square Error (RMSE) and Maximum Absolute

Error (MaxAE) [1]. With the HB, the integration errors of range rate can be

controlled at the pm/s-level in terms of 24-hour arc MaxAE. Moreover, the sub-

nanometer-level range integration precision can be achieved by the Encke’s

formulation with the best-fit reference orbit (HB-BFT), which guarantees enough

numerical precision of orbit integrations for the GRACE-FO and NGGM, while

no DB methods could produce such competitive precisions.

Table 1. The Root Mean

Square Error (RMSE) and

Maximum Absolute Error

(MaxAE) of the integrated

inter-satellite range and

range rate by the double-

precision (DB) and hybrid-

precision (HB) arithmetic

implemented in both the

Cowell’s (COW) and the

Encke’s formulations with

the reference orbit chosen

as the osculating (OSC) or

the best-fit (BFT) one. The

‘true’ values of range and

range rate are generated by

the quadruple-precision

(QD) integration in the

Cowell’s formulation. The

8th-order Gauss-Jackson

integrator with different

step sizes h are used for the

6-hour and 24-hour arc

integrations under the static

gravity field model up to

120 degrees and orders.

(a) presents the results for

all three DB methods, and

(b) for the HB methods.

➢ The hybrid-precision orbit integration technique can efficiently achieve the

picometer/second-level inter-satellite range rate precision for one-day arc

orbit integration in terms of the maximum absolute error, and the sub-

nanometer-level range precision when implemented in the Encke’s formulation

with the best-fit reference orbit;

➢ Due to sensor noises and background models deficiencies, the contribution of

improved orbit integration precision to the final gravity field recovery can be

rather limited as for the GRACE-FO, but it is important for the NGGM where

better satellite constellations and onboard sensors are provided.
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Error Method Arc 
Range (μm) Range Rate (nm/s) 

h = 1.0s h = 2.0s h = 5.0s h = 1.0s h = 2.0s h = 5.0s 

RMSE 

DB-COW 
6-h 1.317  2.224  2.091  0.272  0.336  0.217  

24-h 6.726  25.332  25.277  0.283  0.333  0.626  

DB-OSC 
6-h 0.026  0.096  0.119  0.009  0.013  0.008  

24-h 3.708  0.464  1.108  0.170  0.137  0.065  

DB-BFT 
6-h 0.033  0.093  0.231  0.002  0.006  0.015  

24-h 0.159  0.320  0.998  0.003  0.007  0.016  

MaxAE 

DB-COW 
6-h 1.939  3.129  2.685  0.345  0.489  0.316  

24-h 7.153  26.167  26.318  0.476  0.537  0.982  

DB-OSC 
6-h 0.057  0.143  0.160  0.018  0.026  0.016  

24-h 4.253  0.801  1.382  0.235  0.230  0.101  

DB-BFT 
6-h 0.065  0.123  0.278  0.008  0.014  0.027  

24-h 0.251  0.424  1.135  0.009  0.017  0.030  

 

Error Method Arc 
Range (nm) Range Rate (pm/s) 

h = 1.0s h = 2.0s h = 5.0s h = 1.0s h = 2.0s h = 5.0s 

RMSE 

HB-COW 
6-h 1.231  2.885  1.179  0.491  1.094  0.709  

24-h 12.027  18.579  40.319  1.572  1.396  2.612  

HB-OSC 
6-h 0.505  0.225  0.391  0.049  0.025  0.270  

24-h 14.468  1.223  47.130  0.593  0.285  1.498  

HB-BFT 
6-h 0.055  0.053  0.100  0.013  0.008  0.029  

24-h 0.016  1.126  0.033  0.017  0.034  0.052  

MaxAE 

HB-COW 
6-h 1.945  4.319  2.679  0.773  1.757  1.416  

24-h 13.336  20.996  46.782  2.827  2.990  4.341  

HB-OSC 
6-h 0.599  0.260  0.982  0.085  0.053  0.476  

24-h 15.351  1.655  51.068  1.035  0.532  1.858  

HB-BFT 
6-h 0.086  0.069  0.165  0.024  0.014  0.039  

24-h 0.028  1.164  0.109  0.035  0.056  0.102  

 


