

EGU2020 Live chat May. 8, 2020

Comparison of ¹³⁷Cs activity between an ocean general circulation model and the global database

Daisuke Tsumune^{*1}, Frank O. Bryan², Keith Lindsay², Kazuhiro Misumi¹, Takaki Tsubono¹, Yayoi Inomata³, Michio Aoyama⁴

<u>*tsumune@criepi.denken.or.jp</u>
¹ Central Research Institute of Electric Power Industry,
² National Center for Atmospheric Research,
³ Kanazawa University,
⁴ Tsukuba University

Introduction

- We investigate the oceanic dispersion of ¹³⁷Cs (half-life of 30.1 years) and its impact on the environment.
- ¹³⁷Cs activities measured for scientific purposes as well as environmental health and safety monitoring have been summarized in a historical database by IAEA.
- The spatio-temporal density of the observations varies widely, therefore simulation by an ocean general circulation model (OGCM) can be helpful in the interpretation of these observations.

Input process of ¹³⁷Cs

	Term	Domain	
Global Fallout	1945-	Global Ocean	
Reprocessing Plant	1950-1985	Atlantic Ocean	
Bikini close-in fallout	1946-1958	Pacific Ocean	
Chernobyl input	1986	Atlantic Ocean	
Fukushima input	2011-	Pacific Ocean	

In this study, we focused on the supply of ¹³⁷Cs to the Pacific Ocean before the Fukushima Daiichi Nuclear Power Plant accident.

Objective

- Although simulations of ¹³⁷Cs activity by OGCMs have been carried out previously, the input condition of ¹³⁷Cs still has large uncertainties due to a lack of observations of global fallout.
- The horizontal resolution of the previously available estimated global fallout of ¹³⁷Cs was 10-degree longitude x latitude.
- We have produced a new estimate of the global fallout of ¹³⁷Cs with 2.5-degree resolution using the Global Precipitation Climatology Project (GPCP) data, and investigated the impact of the revised input condition on the simulation of distribution of ¹³⁷Cs in the ocean.

Method (Model)

- Parallel Ocean Program version 2 (POP2) of the Community Earth System Model version 2 (CESM2).
- The horizontal resolution is 1.125 degree of longitude, and from 0.28 degree to 0.54 degree of latitude.
- There are 60 vertical levels with a minimum spacing of 10 m near the ocean surface, and increased spacing with depth to a maximum of 250 m.
- The simulated period was from 1945 to 2010 with the circulation forced by repeating ("Normal Year") atmospheric conditions.

Method (¹³⁷Cs input)

Temporal change of ¹³⁷Cs deposition (Bq/m²/year) at the site of MRI, Japan

Method (¹³⁷Cs input)

Cumulative ¹³⁷Cs deposition ($10^{\circ} \times 10^{\circ}$) in 1970 constructed by observed data (Aoyama et al., 2006).

Meridional distribution of zonal cumulative ¹³⁷Cs deposition in 1970 constructed by observed data (Aoyama et al., 2006).

Horizontal resolution was too large in previous study (Tsumune et al., 2011)

Method (137Cs input)

$$F(\lambda, \phi, t) = F_0(t) \frac{P(\lambda, \phi)}{P_0(t)} \varepsilon(\phi),$$

 $F(\lambda,\,\phi,\,t)$: the estimated annual deposition (Bq/m²/yr)

 λ, ϕ : longitude, latitude t:time

 $F_0(t)$: Observed annual deposition (Bq/m²/yr) on a reference site of MRI at 36° latitude

 $P(\lambda, \phi)$: Annual precipitation(mm/yr) by the GPCP climatological data (2.5° x2.5°) $P_0(t)$: Observed precipitation (mm/yr) on a

reference site

 $\epsilon(\phi)$: Empirical function of the meridional distribution to fit the meridional distribution of zonal cumulative ¹³⁷Cs deposition in 1970 constructed by observed data (Aoyama et al., 2006).

ε values in each 10 degree latitude to optimize the Integrated cumulative ¹³⁷Cs deposition.

Cumulative ¹³⁷Cs deposition by 1970 (Bq/m²) with optimization of integrated cumulative ¹³⁷Cs deposition

Method (¹³⁷Cs input)

Zonal integrated cumulative ¹³⁷Cs depositions latitude are same in global.

Cumulative deposition in the ocean by 2010(PBq)

	Old	New	New/Old
Global ocean	809	637	0.79
North Pacific	436	347	0.80
North Atlantic	187	169	0.90

- Total amount of new cumulative deposition of ¹³⁷Cs is smaller than old one
- ✓ Distribution patterns are different, variable

500 1500 2500 3500 4500 5500 6500 7500 8500 9500

Horizontal distribution of surface ¹³⁷Cs concentration Simulated ¹³⁷Cs distribution is in good agreement with observation

Horizontal distribution of surface ¹³⁷Cs concentration Simulated ¹³⁷Cs distribution is in good agreement with observation

C CRIEPI

- Simulation can help to check the database.
 - Mistake of unit conversion
 - High activity in the Nuclear weapons test site

Summary

- We have simulated ¹³⁷Cs activity derived from the atmospheric weapons tests by an OGCM from 1945 to 2010.
- We have estimated new deposition data with higher resolution.
- New distribution of ¹³⁷Cs deposition improved reproducibility of observed ¹³⁷Cs distribution.
- Comparison between observation and simulation provided useful information to understand the phenomena in the interpretation of sparse observations and find the error in the database.