Comparison of volatility, hygroscopicity and oxidation state of submicron aerosols over the Pearl River Delta region in China #### Shuang Han Supervisor: Nan Ma, Juan Hong Institute for Environment and Climate Research Jinan University, Guangzhou ## **Methods** Figure 1. A schematic of the VH-TDMA instrument system. #### **Results and discussion** ◆ VFR: volume fraction remaining $$VFR = \frac{D_p^3(T)}{D_p^3(T_{room})}$$ $D_p(T_{room})$: the size of the particles at dry conditions (RH<10%) at room temperature $D_p(T)$: diameter of a particle after heating to a certain temperature ➤ BC mass fraction correlated well $(R^2 \approx 0.5)$ with the VFR above 200°C, but could not explain the non-volatile residual alone. Figure 2. Relationship between BC fraction and the volume fraction remaining (VFR) of the particles (size 145nm) at the temperatures of 100° C, 150° C, 200° C, 250, 300° C, respectively. ### **Results and discussion** Figure 3. Correlation between inorganic fraction and the VFR_{nonBC} of 145nm particles at different temperatures. **BCF**: BC fraction in the aerosol mass M_{BC} : mass concentration of BC M_{tot} : total mass concentration of aerosols **VFR(T)**:volume fraction remaining at (T) $VFR_{nonBC}(T)$: volume fraction remaining at (T) without the effect of BC ρ_{BC} : density of BC (1.8 g/cm³) #### **Results and discussion** - The non-volatile residual material were hygroscopic (HGF=1.45) - Except for BC, non-volatile residual material at 300°C may be sea salt, low-volatile ammonium or organic polymer. Figure 4. Correlation between HGF and the VFR_{nonBC} of 145nm particles at 300°C.