Comparison of volatility, hygroscopicity and oxidation state of submicron aerosols over the Pearl River Delta region in China

Shuang Han

Supervisor: Nan Ma, Juan Hong

Institute for Environment and Climate Research

Jinan University, Guangzhou

Methods

Figure 1. A schematic of the VH-TDMA instrument system.

Results and discussion

◆ VFR: volume fraction remaining

$$VFR = \frac{D_p^3(T)}{D_p^3(T_{room})}$$

 $D_p(T_{room})$: the size of the particles at dry conditions (RH<10%) at room temperature

 $D_p(T)$: diameter of a particle after heating to a certain temperature

➤ BC mass fraction correlated well $(R^2 \approx 0.5)$ with the VFR above 200°C, but could not explain the non-volatile residual alone.

Figure 2. Relationship between BC fraction and the volume fraction remaining (VFR) of the particles (size 145nm) at the temperatures of 100° C, 150° C, 200° C, 250, 300° C, respectively.

Results and discussion

Figure 3. Correlation between inorganic fraction and the VFR_{nonBC} of 145nm particles at different temperatures.

BCF: BC fraction in the aerosol mass

 M_{BC} : mass concentration of BC

 M_{tot} : total mass concentration of aerosols

VFR(T):volume fraction remaining at (T)

 $VFR_{nonBC}(T)$: volume fraction remaining at (T) without the effect of BC

 ρ_{BC} : density of BC (1.8 g/cm³)

Results and discussion

- The non-volatile residual material were hygroscopic (HGF=1.45)
- Except for BC, non-volatile residual material at 300°C may be sea salt, low-volatile ammonium or organic polymer.

Figure 4. Correlation between HGF and the VFR_{nonBC} of 145nm particles at 300°C.