From Pedo to Pedon: Towards the next generation of transfer functions to estimate saturated hydraulic conductivity Alejandro Cueva¹, Daniel R. Hirmas¹, Attila Nemes², Pamela L. Sullivan³ Department of Environmental Sciences, University of California - Riverside, Riverside, CA, USA Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA ## Why you should stay in this presentation? Here we present a <u>new framework</u> to predict K_{sat} using transfer functions #### **Common PTFs (usually used)** - Soil material arising from different soil horizons are treated as independent samples. - Highly dependent of soil textural information $$K_{sat} = f(clay) + f(sand) + f(bulk density)$$ # To Pedontransfer Function (PnTF) #### This work (what we propose) - We present a framework to predict K_{sat} that incorporates its <u>depth dependency</u>. - We show that we can predict K_{sat} at an arbitrary depth from surface information. - Our best predictors incorporates time-varying information (i.e., meteorological data). ## Different models need PTFs at different spatial scales Single-point scale Field scale Landscape scale Land Surface Model Global Climate Model Small scale Agriculture, water, solute transport Energy and mass balance Climate change Large scale ## Common PTFs are simple to implement ## Common PTFs are simple to implement Examples from Zhang & Schaap (2019) (2) Two independent variables to estimate K_s in Cosby et al. (1984) $$K_s = 60.96 \times 10^{0.0126 \times sand - 0.0064 \times clay - 0.6}$$ (B3) (3) Wösten et al. (1999) ``` K_s = exp[7.755 + 0.0352 × silt + 0.93 × topsoil - 0.967 × BD^2 - 0.000484 × clay^2 - 0.000322 × silt^2 + 0.001/silt - 0.0748/OM - 0.643 × ln(silt) - 0.01398 × BD × clay - 0.1673 × BD × OM + 0.02986 × topsoil × clay - 0.03305 × topsoil × silt] (B4) ``` where topsoil and subsoil are qualitative variables having the value of 1 or 0, respectively. # From Pedo to Pedon Is there a depth-dependency of K_{sat} and can we incorporate the depth-dependency of K_{sat} in PTFs? • Need to incorporate time-varying variables to predict K_{sat} Time varying variables usually are available/influence soil surface (Precipitation, VPD, LAI, NDVI) ### Motivation: • Could K_{sat} at an arbitrary depth be predicted from the surface? ## What data did we used? # Pedogenic and Environmental DataSet (PEDS) Includes climatological and field-based pedon information from >300,000 soil horizons across the globe. We used USA data only. K_{sat} was estimated using a Kozeny-Carman equation: $$K_{sat} = 1930EP^{3-D}$$ where: D = Slope of the water retention curve EP = Effective porosity # Is there a depth-dependency of K_{sat} ? #### Variability of K_{sat} decreases at depth - Higher variability of K_{sat} at surface, lower variability of K_{sat} at depth - The magnitude of Ksat decreases with depth #### **Potential reasons:** - Macroporosity constrained by overburden pressure - Lessivage of soil fine particles # Is there a depth-dependency of K_{sat} ? # Could K_{sat} at an arbitrary depth be predicted from the surface? $$K_{sat} = b_{0,i}(Z)^{m_i}$$ Left panel $$\ln K_{sat} = \ln b_{0,i} + m_i \ln Z$$ Right panel #### where: K_{sat} = Saturated hydraulic conductivity Z = Soil depth $b_{0,i}$ = Intercept or K_{sat} at 1 cm below land surface in the *i*th soil profile m_i = Slope of the linearized K_{sat} -Z function for the ith soil profile We estimated the $b_{0,i}$ and m_i parameters for each soil profile # Is there a depth-dependency of K_{sat} ? # Could K_{sat} at an arbitrary depth be predicted from the surface? $$K_{sat} = b_{0,i}(Z)^{m_i}$$ $$\ln K_{sat} = \ln b_{0,i} + m_i \ln Z$$ #### where: K_{sat} = Saturated hydraulic conductivity Z = Soil depth $b_{0,i}$ = Intercept or K_{sat} at 1 cm below land surface in the *i*th soil profile m_i = Slope of the linearized K_{sat} -Z function for the ith soil profile We estimated the $b_{0,i}$ and m_i parameters for each soil profile We found a <u>negative linear relationship</u> that exists between the intercept and the slope of the regressions This suggest that we can use K_{sat} at surface $(b_{0,i})$ to predict its rate of change in relation to depth B_0 = Intercept from a population of profile-derived parameters M = Corresponding slope 10 # Example for the <u>negative linear relationship</u> between the intercept and the slope of the regressions $b_{0,i}$ = Intercept or K_{sat} at 1 cm below land surface in the *i*th soil profile The higher the intercept, the higher the rate of decrease # Can we predict K_{sat} at surface $(b_{0,i})$? - We build a common PTF to predict - We used a stepwise multiple linear regression (MLR) to predict b_{0,i} - Initial predictor variables: - Bulk density (BD) - Sand - Clay - Coefficient of linear extensibility (COLE) - Mean annual precipitation (MAP) - Mean annual temperature (MAT) - Vapor pressure deficit (VPD) *Soil data is for the upper horizon $b_0 = \text{Intercept or } K_{sat} \text{ at 1 cm below}$ land surface in the ith soil profile #### Final predictor variables: - **Bulk density** - Sand - Coefficient of Linear Extensibility (COLE) - Mean annual temperature (MAT) - Vapor pressure deficit (VPD) $$b_{0,i}$$ = 12.62 - (5.8 × BD) + (0.038 × Sand) - (24.75 × COLE) + (0.157 × MAT) - (0.175 × VPD) *Soil data is for the upper horizon # Workflow - <u>Pedon</u>transfer Function (PnTF) m_i = Slope of the linearized K_{sat} -Z function for the ith soil profile ## Pedontransfer Function (PnTF) $$b_{0,i} = 12.62 - (5.8 \times BD) + (0.038 \times Sand) - (24.75 \times COLE) + (0.157 \times MAT) - (0.175 \times VPD)$$ *Soil data from the upper horizon $m_i = 0.377 - 0.266 b_{0,i}$ $\ln K_{sat} = \ln \frac{b_{0,i}}{h} + \frac{m_i}{h} \ln Z$ $b_{0,i}$ = Intercept or K_{sat} at 1 cm below land surface in the *i*th soil profile m_i = Slope of the linearized K_{sat} -Z function for the ith soil profile ## Summary and conclusions #### Limitations - There are overestimations at high and low extremes of K_{sat} - There is a low explained variability of the 1:1 relationship of the predicted VS observed K_{sat} #### **Future work** - Improve the prediction of $b_{0,i}$ - Classification and regression trees - Random forests - Artificial Neural Networks - Explore new predictors for b_{0,i} - Use taxonomic information to find where the performance of PnTF is good/bad $b_{0,i}$ = Intercept or K_{sat} at 1 cm below land surface in the *i*th soil profile ## Summary and conclusions • We presented a framework to predict K_{sat} that incorporates its depth dependency. • We have shown that, at a modest level, we can predict K_{sat} at an arbitrary depth from surface information. • Our best predictors incorporates time-varying information (i.e., meteorological data). ## Acknowledgements This material is based upon work supported by the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. ## Questions? alejandc@ucr.edu / alexcueva88@gmail.com Alejandro Cueva University of California, Riverside.