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Introduction

Geochemistry of volatiles in active volcanoes provides insights into the magmatic processes and
evolution at depth, such as magma evolution and degassing, which can be implemented into volcanic

hazards assessment.

Deception Island (Antarctica)
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The Island is located at the southwestern end of
Bransfield Strait, 100 km north of the Antarctic
Peninsula.(Modified from Geyer et al. 2019)

Deception Island is one of the most active
volcanoes in Antarctica, with more than 20
explosive eruptive events registered over the
past two centuries.
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Simplified geological map of Deception Island showing
the location of the analyzed samples, and distribution of
the two main tectonic fault sets (NW-SE and NE-SW).
(Modified from Alvarez-Valero et al. 2020).

Volcanic and magmatic evolution has been
strongly marked by the development of a
collapse caldera occurred around 4000 years
ago.

(Hydrogen and oxygen isotopic variations In the\

volatiles trapped in the Deception Island rocks
provide essential information on the processes
controlling the magmatic evolution and eruption
dynamics in this volcanic suite.

Pre-caldera stage Caldera collapse stage Post-caldera stage
Basaltic Shield Formation Outer Coast Tuff Formation Various formations

The construction of the Island is separated into three evolutionary
stages pre-, syn- and post-caldera. Source: Geyer et al. (2019)

Volcanic rocks are tholeiitic, from basalts to
trachydacites and rhyolites, and follow an alkalinity-
increasing trend at the upper end of the subalkaline
field in the Total Alkali vs. Silica diagram
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Total Alkali vs. Silica diagram (Le Bas et al., 1986) for the DI
samples. Source: Alvarez-Valero et al. (2020)

'Results

6D, 680 and H,0(%) contents were analysed in
glass and melt inclusions of pre-, syn- and post-
caldera samples.

Glass and melt inclusions

0.5 mm

Examples of melt inclusions (arrows)-bearing phenocrysts (a)
syn-caldera olivine and (b) pre-caldera plagioclase immersed in
a sideromelane + palagonitic glassy matrix. (Modified from
Alvarez-Valero et al., 2020).
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Size estimation and shape (3D) reconstruction of a melt
inclusion within an olivine crystal obtained by micro-computed
tomography (micro-CT). (Modified from Alvarez-Valero et al.
2020).
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Our calculations for degassing in the Deception Island
samples show that isotopic ratios and water contents of
magmas are consistent with pre- to syn-eruptive
degassing in either closed-, open- or mixed- systems of
magmas with an initial 6D value close to —55%.. While
pyroclasts follow a closed-system degassing model, lavas
degas in open-system conditions.
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Calculated degassing curves at closed- (red arrow), open- (black arrow) and mixed-system conditions (green dashed arrow), for the pre- (a),
syn- (b) and post-caldera (c) samples. Water content variations from 1.5 to 2.5 wt% slightly change the curves slopes. Source: Alvarez-Valero

et al. (2020)

The dD and &80 isotopic values of the less degassed magmes point to no pre-eruptive interaction between magma
and external water. This implies (i) a deep magma reservoir were infiltration of surficial water is limited, and (ii) the
low porosity of the rock samples did not allow low-0180 waters to circulate.
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Examples of calculated post-rehydration curves
for pre- and post-caldera samples (Modified
from Alvarez-Valero et al. 2020).

Deviations from the expected
degassing trends are most probably
related to post-emplacement
rehydration (i.e. by surface
weathering and/or  hydrothermal
alteration) of glass by seawater,
fumarolic and meteoric waters of
variable oD values.
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" Conclusions

and by meteoric and fumaroli

0 o A N O

c waters.

infiltration of surface

through faults

(i) Fast ascent and quenching of most magmas, preserving pre-eruptive
magmatic signal of water contents and isotopic ratios, with local post-
emplacement modification by rehydration due to glass exposition to seawater,

(i) A plumbing system(s) variable
and:seaatnrs with time and currently dominated
heaviest 5D by closed-system  degassing
leading to explosive eruptions

(iii) control on the interactions of

-2.0 . .
o ascending magmas with the
surface waters producing
T - hydrovolcanic activity throughout
< 14— 5 3 the two main fault systems
£ 16 [ 2 f )
B o P Our study demonstrates that
g | 5.0 o geochemistry of stable isotopes
£0 "g is the complementary tool of the
22 D entire petrological information,
24 .5 - to advance in the knowledge of
26 ' magmas degassing and
28 potential rehydration processes
¥ In an active hydrovolcanic
system.
% Schematic summary of the isotopic variation at the post-
Post-caldera deposits Syn-calderadeposits  cgldera stage of Deception Island highlighting some
E sample examples under closed- vs. open- vs. mixed-
S e _ system degassing conditions (Modified from Alvarez-
re-caldera deposits Sediments
Valero et al. 2020).
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