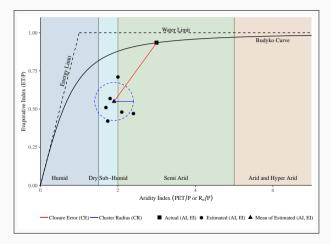
CLOSING THE COMBINED WATER AND ENERGY BALANCE OF GLOBAL WATERSHEDS BASED ON SATELLITE DATA


Sarfaraz Alam¹, **Akash Koppa**^{1,3,*}, Diego G. Miralles², & Mekonnen Gebremichael¹

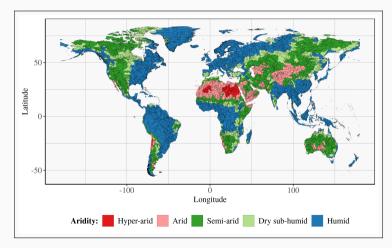
¹Department of Civil and Environmental Engineering, University of California, Los Angeles ²Hydro-Climate Extremes Lab (H-CEL), Ghent University, Coupure Links 653, 9000 Ghent Belgium ³Department of Computational Hydrosystems, Helmholtz Center for Environmental Research - UFZ, Leipzig, Germany *** Corresponding Author**: akashkoppa@ucla.edu

©Authors. All rights reserved

- · Closing the water and energy balance of watersheds from observations: A longstanding scientific challenge in Hydrolgy.
- \cdot Ground-based measurements have so far proved to be inadequate due to issues of scaling.
- \cdot Earth Observations Satellites (EOS) are a compelling alternative.
- Drawbacks of EOS for closure studies using traditional water and energy budget equations:
 - $\cdot\,$ Lack of accurate data on storage changes, ground heat flux, and runoff.
 - · Large variability in sensors and retrieval algorithms.

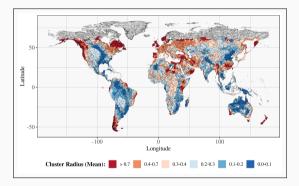
Approach

Figure 1: Budyko space showing Cluster Radius and Closure Error metrics


Budyko Hypothesis as a proxy for water-energy balance equations

- We define two metrics in the Budyko space for the appraisal of water-energy balance closure
 - Cluster Radius (CR) Uncertainty of closure
 - Closure Error (CE) –
 Degree of closure

We use an ensemble of precipitation (P), terrestrial evaporation (ET) and net radiation (R_n) datasets to calculate CR and CE


P Datasets	ET Datasets	R _n
CHIRPSv2.0	AVHRR.NTSG	
CMORPHv0.x.RAW	SSEBOpv4.0	
PERSIANN	MOD16A3	
PERSIANN.CCS	GLEAMv3.3a	CERESv4.0
PERSIANN.CDR	GLEAMv3.3b	
TRMM.3B42RT	CSIRO-PMLv2.0	
TRMM.3B43	BESS	
	FluxCom.RS	

STUDY AREA

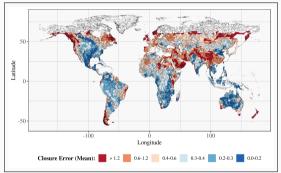


Figure 2: Study Area consisting of 4734 watersheds based on HydroBASINS (Pfafstetter level 5) and classified according to according to aridity

RESULTS - CLUSTER RADIUS AND CLOSURE ERROR

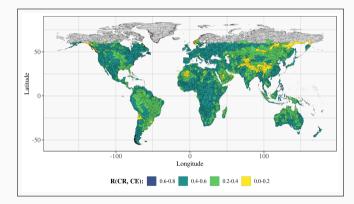
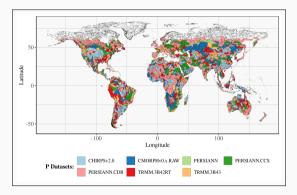


Figure 3: Global patterns of CR. Higher CR implies higher uncertainty water and energy balance closure


Figure 4: Global patterns of CE. Higher CE implies higher disagreement between the datasets and the Budyko hypothesis

RESULTS - CLUSTER RADIUS AND CLUSTER ERROR

Figure 5: Ratio of CR / (CR+CE). Lower values of the ratio implies P and ET datasets agree with each other but all of them fail to close the water-energy balance. Higher values of the ratio implies high uncertainty among datasets but few datasets close the water-energy balance very well

RESULTS - BEST P AND ET DATASETS

Figure 6: Global patterns of the best precipitation dataset for closure studies

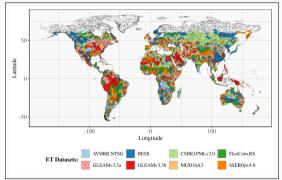


Figure 7: Global patterns of the best evaporation dataset for closure studies

- \cdot We quantified the potential of EOS in closing the water and energy balance of global watersheds using a novel framework
- \cdot Uncertainty (CR) and degree (CE) of closure are highly variable in space
- $\cdot\,$ High uncertainty primarily due to uncertainty in ET datasets
- $\cdot\,$ P and ET datasets need to be improved in mountainous watershed

ΤΗΑΝΚ ΥΟυ