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Introduction

Hydro-meteorological association has been studied for:

o Global Circulation Model (GCM) prediction for
climatic/meteorological variable is better than

hydrological variable.

@ Inter-relation (hydro-meteorological
association) is challenging to model due to

sptio-temporal variability; however if modeled,

it will help in ensuring future water security

with changing climate.

@ The hydro-meteorological association should
be continuously evolving with time.

@ Meteorological forcing might not necessarily be

affecting all frequency ranges of the

hydrological variable.
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Methodology

Hypothesis

MRSWT decomposition of MRSWT decomposition of

{ independent time series ] @ Due to continuous evolution, the
hydro-meteorological association should be

N . - C t .
[Resndua(l:;cilsatltr::uon are prediciad by kemel ‘ more pronounced at constituent wavelet level.
estimator

@ Wavelet component may have two parts:
Memory: modeled using auto-regressive
model.

Exogenous part: Driven by
affecting/exogenous variables.

ARX model 1 and 2 used
for modeling the residual
series
Summation

Reconstruction of
dependent time series

Performance assessment

@ After separating memory part, the exogenous

part can be modeled as function of exogenous
Figure 1: Proposed Wavelet-Auto-Regressive model with ot
eXogenous inputs (ARX) Model: Methodological Overview actors. 4
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Components are predicted
by kernel estimator

Figure 1: Proposed Wavelet-ARX Model: Methodological
Overview
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Coefficient of Determination (R?), Refined Index of
Agreement (D,), Mean Absolute Error (M AFE) and
unbiased Root Mean Square Error (uRM SE) are
used for assessing model performance.
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Relative Importance Analysis

Dominance Analysis
Measure the average association contributed
by individual input.

Y= M(X)|, X2, Xs)
R*(M(X1, X))  — R*(M(X3))

DARIM; = mean{ R* (M (X1,X3))  — R*(M(X3))

R? (M(X1,X2,X3)) — R*(M(Xz,X3))

Hence,
oN—-1_4
> (Biuqrorry—Riuror)
DARIM, = —=! —

Birnbaum Importance Measure
Measures the probability of a input being
critical for proper functioning of the model.

Assumption:

RMSE (M(X1)) | RMSE(M(X1,X2)) |RMSE (M(X1,X2,X3))
RMSE(M(X>)) | RMSE(M(X»,X3))

RMSE(M(X3)) | RMSE(M(X,Xs))

u=1-— % =0.25 uz = 0.25 uz = 0.5
BIM> = ujug = 0.125
BIMZ = ULUUZ * * * Uj—1Uj+1 """ UN
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Prediction of total monthly precipitation in UMB
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Table 1: Details of data utilized for predicting monthly rainfall

over UMB
Independent Time Series Source Temporal R? with
Res. rainfall
Avg. Surface Air Temp. NOAA*  Monthly 0.0015
Precipitable Water Content NOAA Monthly 0.7682
Surface Pressure NOAA Monthly 0.4576
Avg. Air Temp. (925 mb) NOAA Monthly 0.0102
Avg. Air Temp. (700 mb) NOAA Monthly 0.2739
Avg. Air Temp. (500 mb) NOAA Monthly 0.5996
Avg. Air Temp. (200 mb) NOAA Monthly 0.5799
Avg. Sp. Humidity (925 mb) NOAA Monthly 0.7265
Avg. Sp. Humidity (850 mb) NOAA Monthly 0.7444
Avg. Geop. Height (925 mb) NOAA Monthly 0.5039
Avg. Geop. Height (500 mb) NOAA Monthly 0.0063
Avg. Geop. Height (200 mb) NOAA Monthly 0.5120
Avg. U Wind (925 mb) NOAA Monthly 0.4277
Avg. U Wind (200 mb) NOAA Monthly 0.6403
Avg. V Wind (925 mb) NOAA Monthly 0.0003
Avg. V Wind (200 mb) NOAA Monthly 0.2426

* (Kalnay et al., 1996)

Target Series: Basin precipitation recorded by India
Meteorological Department (IMD) (0.5°latitude x
0.5°longitude)(Rajeevan et al., 2008)
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Results
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Figure 3: Observed and MRSWT components of monthly rainfall
series in the study basin
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Results

Table 2: Statistics showing model performance for prediction of monthly rainfall over the study basin during the testing period

Model No. of Auto- Lag in exogenous time series input (q)
gte;::ﬁnle;nce il?]s'e’irtes(;i;/e ARX (for Comparison) Model 1 Model 2
0 1 2 3 0 1 2 3 0 1 2 3
1 0873 0864 - - 0818 0783 - } 0752 0821 - ,
B 2 0877 0864 0862 - 0001 0877 0862 - 0883 0897 0895 -
3 0874 0860 0859 0851 0011 0885 0873 0763 0887 0905 |0907  0.895
1 0858 0856 - , 0835 0806 - - 0810 0833 - ,
Dr 2 0858 0853 0853 - 0871 0845 0831 - 0857 0864 0861 -
3 0.856 0.853 0851 0842 0873 0847 0839 0782 0855 0864 |0.864  0.855
1 5785 5943 - - 61.00 67.58 - ; 7016 6126 - -
MAE 2 5670 5920 5832 - 46.15 5099 5410 - 50.17 47.05 4752 -
3 5650 5915 58.84 50.11 4437 4946 5190 7115 5001 45.64 |4528  47.89
1 5630 57.60 - » 60.95 6882 - ; 7113 60.63 - »
uRMSE 2 5540 5755 56.67 - 4613 5034 5323 - 51.04 4670 4720 -
3 5541 57.67 57.17 5810 4435 4887 5118 60.00 5100 4510 |44.83  47.40
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Results
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Figure 5: Scatter plot between observed and predicted monthly rainfall over the

of p and ¢ using hybrid Wavelet-ARX model 2.
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Results

Table 3: Relative Importance Measure for independent
variables using Wavelet-ARX model 2 (p = 3 and
q = 2) for monthly rainfall prediction.

Independent Time Series

BIM (x10°°)

DARIM (x107%)

Avg.

Surface Air Temp.

Precipitable Water Content
Surface Pressure

Avg.
Avg.
Avg.
Avg.
Avg.
Avg.
Avg.
Avg.
Avg.
Avg.
Avg.
Avg.
Avg.

Air Temp. (925 mb)
Air Temp. (700 mb)
Air Temp. (500 mb)
Air Temp. (200 mb)
Sp. Humidity (925 mb)
Sp. Humidity (850 mb)
Geop. Height (925 mb)
Geop. Height (500 mb)
Geop. Height (200 mb)
U Wind (925 mb)

U Wind (200 mb)

V Wind (925 mb)

V Wind (200 mb)

6.48
4.83
8.13
7.14
4.77
4.20
5.03
5.64
4.12
6.10
5.64
5.47
6.06
5.48
522
3.62

4.10
3.94
6.39
4.76
2.00
-1.38
1.04
3.88
1.06
5.47
4.53
1.83
3.29
2.47
0.82
-1.83
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Geop.
Height
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Air Tem-
perature
(925 mb)

DARIM

Surface
Pressure

¥

Basin

Precip- <€ Air Tem-

itation
A
Geop.

Height
(500mb)

0.910
0.869
44.25
44.01

Surface

perature

All

Variables
(Table 2)
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Take Home

@ The association between meteorological and hydrological variables are more prominent on wavelet
component level, resulting in Wavelet-ARX model outperforming ARX model in most of the cases.

o WT-ARX model 2 outperforms model 1 when exogenous input components are considered, hence,
the WT components of input/target variables at same level (same frequency bins) are more
associated.

o Additionally, the relative importance analysis of meteorological variables helps in identifying the
forcings having stronger hydro-climatic association with hydrological variables.

@ For instance, the meteorological variable having highest association with total monthly precipitation
in UMB are surface pressure, average geo-potential height at 925mb, average air temperature at
925mb, average geo-potential height at 500mb and average surface air temperature.
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ARTICLE INFO

ABSTRACT

T manucrpt s andied by . Badossy,
Editor.

Keywords:
Hydroclimatic association
Rainfal prediction/simulation
Glimate change

Hybrid Wavelet ARX

Relative importance analysis

interacton between meteorological and hydmloxxr processes is rh:«llenxmx 0 model owing to their high spatio-
mporal variability. elp fresh
changmg climate. In this study, due to mmm\mnsly evolving nature of these interactions, the hydrological and
‘meteorological variables are studied on wavelet component level. Multi-Resolution Stationary Wavelet
‘Transformation (MRSWT) is used to transform the independent (climatic variable) and dependent (hydrological
variable) time series into their components. The components of the dependent time series are modeled using a
kernel-based auto-regressive (AR) model for separating their memory part. The residuals are hypothesized to be
the effect of interaction of predictor variables and thus, are modeled using the MRSWT components of me-
teorological variables in an auto-regressive model with exogenous inputs (ARX). Finally, the predicted residuals
(effect of climatic variables) are added to the component estimated by kernel-based AR estimator (memory of
dependent series components) to obtain the predicted components of the dependent hydrologic variable, which
e then inverse transtormed to obain the prediced dependent hydrologi variable The developed hybrid
Wavele-ARX s found better
iodel. The model is then applied over Upper B
i oo zﬁecnvely extract the information from the poorly associated hydro meteorological variables.
While the potential of Wavelet-ARX is found to be impressive for hydro merenmlnglml applvmlmns ad-
ditionally,
by the developed model. The developed model is suitable for extracting climatic [ommgs i gt e
changing climate,

1. Introduction

EGU 2020

association as far as rainfall is concerned in the basin.
It is hypothesized that the inter-relationship between meteor-
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Wavelet Transform

Need of Transform — The usual representation
(Amplitude vs Time) is not always the best for
analysis.

Help in separating slow moving and fast moving
components of time series.

Wavelet Transform (WT) : transforms signals
into coefficients of scaled and shifted version of
wavelet function.

Due to finite domain, scaling and shifting of
wavelet function enable it to catch most of in-
termittent disturbances of different durations.

WT represents the signal in terms of frequency
and time domain.

Mayank Suman & Rajib Maity (IITKGP) EGU 2020

@ Unlike Fourier transform, WT provide the tem-

poral information along with frequency informa-
tion.

Well suited for the study of multi-scale, non-
stationary signals (Daubechies, 1992; Burrus et al.,
1998).

Multi-Resolution Wavelet Transform (MRWT):
WT can again be applied on approximate com-
ponent to produce components at even lower
level or frequency ranges (Burrus et al., 1998).

WT are of many types based different shifting
and scaling schemes

» Continuous Wavelet Transform (CWT)

» Discrete Wavelet Transform (DWT)

» Stationary Wavelet Transform (SWT)

May 8, 2020 2/13



Wavelet Function

o Wavelet functions are finite domain square-integrable disturbance of unit energy and zero mean
amplitude. Ex.- Haar, Daubechies, Morlet etc.

/w(t)dt =0 / [ dt =1

o Wavelet functions can separate only one half (higher) of frequency range, hence, they have another
function called scaling function to separate the other half frequency range from signal.

@ Haar wavelet:

a) s b) s T
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I i |
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Figure 6: a) Haar wavelet function b) Corresponding scaling fuction
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Continuous Wavelet Transform

If 1(t) is wavelet function then its shifted and scaled functions (¢, (t)) are obtained as:

buat) = 70 (122) (1)

where a € R, and b,t € R. a and b are scaling and shifting parameters respectively. Wavelet transform
is given by:

1
Wlat) = —z= [ 1w, 2)
VCy
2
where the * denotes complex conjugate, Cy, = 27 [ )w(w)) Jwdw. The denotes the Fourier transform
Bw) = [ e =t (t)dt/v/2m.

If the basis wavelet or mother wavelet 1 (t) is orthogonal (Daubechies, 1992), then the inverse of wavelet
transformation is given by:

f) = \/27 / Wf(a’lea’b(t)da db (3)

Mayank Suman & Rajib Maity (IITKGP) EGU 2020 May 8, 2020 4/13



Dyadic Discrete Wavelet Transform

DWT is formed when shifting and scaling parameters are taken discrete. The discrete wavelet if sampled
over dyadic space, time grid, then they are called dyadic discrete wavelets (Cao et al., 1995).

o) = 7= (35 - ) (@

where j, k € Z. The DWT is similar to CWT but it is applied in discrete terms.

As per Nyquist— Shannon sampling theorem, subband coding (downsampling by avoiding every second
sample) is carried out to avoid redundancy in component series as suggested by following relation:

N,B. = N.B, (5)

where N and B shown length and bandwidth of signal. Subscript 0 and ¢ mean parent and component
series. Hence, N, = No/2

Mayank Suman & Rajib Maity (IITKGP) EGU 2020 May 8, 2020 5/13



Stationary Wavelet Transform

@ SWT is specially designed to avoid the transition-invariance of DWT.

@ SWT achieves transition-variance by avoiding down-sampling of components as per Nyquist-Shannon
sampling theorem and up-sampling the filter coefficient.

@ Despite redundancies in components, SWT reduces the complexity of signal analysis as both input
signal and its components have equal length.

@ In this study, the SWT is used as preferred WT.

Mayank Suman & Rajib Maity (IITKGP) EGU 2020 May 8, 2020 6/13



Filter theory basis of DWT and SWT

DWT or SWT can be applied as pair of high
pass and low pass filters.

High pass filter is obtained from wavelet func-
tion and low pass filter is obtained from corre-
sponding scaling function.

Component from high pass filter is called de-
tailed component and other is called approxi-
mate component.

The approximate and detailed components show
trend and local disturbance respectively in the
parent signal.

Mayank Suman & Rajib Maity (IITKGP)
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Wavelet components at time ¢ is projection of f(t)
over daughter wavelet functions.

Wyt = = [HOw@0 @

Given constant j, the equation is convolution of
f(t) with dilated, reflected and normalized mother
wavelet h(t) = 571 (5£). For reference convolution
between p(t) and ¢(t) is given by

o= [

Hence, for Haar wavelet, the dilated reflected and

p(r)g(t —7)dr ()

normalized filters are h = %[1, —1] and
gl = 11,11
May 8, 2020 7/13



Multi-Resolution Wavelet Transform

@ Multi-Resolution Wavelet Transform (MRWT) provides the detailed and approximate components at
even lower levels by using low pass filter component from higher level as input to wavelet transform
at each subsequent level.

@ MRWT enhances the accuracy of prediction.

@ The MRWT is named on the basis of the wavelet transform algorithm being used repeatedly like
Multi-Resolution Discrete Wavelet Transform (MRDWT) or Multi-Resolution Stationary Wavelet
Transform (MRSWT).

@ lrrespective of WT used, after application of MRWT a function can be represented as

FO = ansnn(®) + YD dintii(t) (8)
k

j=1 k

where a, i is called the coarse or approximate coefficient and d; j, is called the detailed component
or wavelet coefficient at level j. The n is the maximum level of decomposition of MRWT, k denotes
the shift parameter of wavelet functions.
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Scaling parameter
@ Scale parameter (a) is inversely related to the wave frequency.
@ High scale or low frequency corresponds to non-detailed global view (of the signal), and low scale
or high frequency corresponds to detailed view.
e Dilate (a > 1) or compress (a < 1) mother wavelet function.
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Figure 7: Graphical representation of sine signal of different scales.
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Common wavelet functions

Discrete Wavelet Functions
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Kernel Estimator

@ Non-parametric estimators for estimating probability distribution of a given data set.
@ The components of hydrological time series are estimated as

Yy an(HK (%>
Srk (S5
S di(K (M)
S K ()

where K represents kernel function, and parameter h is the window of the kernel function. Naive
kernel function (Maity and Nagesh Kumar, 2008; Bosq, 2012) is used in this study.

an(m+1) =

(92)

dj(m+1) = (9b)
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Different Kernel Functions

Naive Normal Epanechnikov
K(u) =1 K(u) = - exp (=£ K(u) = 11—«
(U) - m p 2 4f 5
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ARX Model

Aoy(t) = SkAey(t—p)+ DY T1;Cou(t—j) + E (10)

k=1 =1 j=0

where the number of auto-regressive terms and exogenous inputs are represented by p and q respectively.
Acy(2) is t*" time step residual in any one component of the dependent variable Y,
C, represents the set of selected individual components of the independent variable set X, and
c represent the number of members in set C, or cardinal number of C,.
C,.1 represents [ member of C,.
S and T represent the set of regression parameters estimated during model calibration period.
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