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Introduction

Global Circulation Model (GCM) prediction for
climatic/meteorological variable is better than
hydrological variable.

Inter-relation (hydro-meteorological
association) is challenging to model due to
sptio-temporal variability; however if modeled,
it will help in ensuring future water security
with changing climate.

The hydro-meteorological association should
be continuously evolving with time.

Meteorological forcing might not necessarily be
affecting all frequency ranges of the
hydrological variable.

Hydro-meteorological association has been studied for:
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Figure 1: Proposed Wavelet-Auto-Regressive model with
eXogenous inputs (ARX) Model: Methodological Overview

Hypothesis
Due to continuous evolution, the
hydro-meteorological association should be
more pronounced at constituent wavelet level.

Wavelet component may have two parts:
I Memory: modeled using auto-regressive

model.
I Exogenous part: Driven by

affecting/exogenous variables.

After separating memory part, the exogenous
part can be modeled as function of exogenous
factors.
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Coefficient of Determination (R2), Refined Index of
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unbiased Root Mean Square Error (uRMSE) are
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∣∣∣
n

uRMSE =

√∑
((Y − Y ) − (Ŷ − Ŷ ))2
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Relative Importance Analysis
Dominance Analysis
Measure the average association contributed
by individual input.
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Prediction of total monthly precipitation in UMB

Figure 2: Study Basin – Upper Mahanadi Basin

Table 1: Details of data utilized for predicting monthly rainfall
over UMB

Independent Time Series Source Temporal
Res.

R2 with
rainfall

Avg. Surface Air Temp. NOAA* Monthly 0.0015
Precipitable Water Content NOAA Monthly 0.7682
Surface Pressure NOAA Monthly 0.4576
Avg. Air Temp. (925 mb) NOAA Monthly 0.0102
Avg. Air Temp. (700 mb) NOAA Monthly 0.2739
Avg. Air Temp. (500 mb) NOAA Monthly 0.5996
Avg. Air Temp. (200 mb) NOAA Monthly 0.5799
Avg. Sp. Humidity (925 mb) NOAA Monthly 0.7265
Avg. Sp. Humidity (850 mb) NOAA Monthly 0.7444
Avg. Geop. Height (925 mb) NOAA Monthly 0.5039
Avg. Geop. Height (500 mb) NOAA Monthly 0.0063
Avg. Geop. Height (200 mb) NOAA Monthly 0.5120
Avg. U Wind (925 mb) NOAA Monthly 0.4277
Avg. U Wind (200 mb) NOAA Monthly 0.6403
Avg. V Wind (925 mb) NOAA Monthly 0.0003
Avg. V Wind (200 mb) NOAA Monthly 0.2426
* (Kalnay et al., 1996)

Target Series: Basin precipitation recorded by India
Meteorological Department (IMD) (0.5°latitude ×
0.5°longitude)(Rajeevan et al., 2008)
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Results

Figure 3: Observed and MRSWT components of monthly rainfall
series in the study basin

Figure 4: Predicted components residuals from ARX model 2 (p = 3
and q = 2) as compared to the originally calculated residuals during
testing period.
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Results

Table 2: Statistics showing model performance for prediction of monthly rainfall over the study basin during the testing period
Model
Performance
Statistics

No. of Auto-
Regressive
input (p)

Lag in exogenous time series input (q)
ARX (for Comparison) Model 1 Model 2

0 1 2 3 0 1 2 3 0 1 2 3

R2
1 0.873 0.864 - - 0.818 0.783 - - 0.752 0.821 - -
2 0.877 0.864 0.862 - 0.901 0.877 0.862 - 0.883 0.897 0.895 -
3 0.874 0.860 0.859 0.851 0.911 0.885 0.873 0.763 0.887 0.905 0.907 0.895

Dr

1 0.858 0.856 - - 0.835 0.806 - - 0.810 0.833 - -
2 0.858 0.853 0.853 - 0.871 0.845 0.831 - 0.857 0.864 0.861 -
3 0.856 0.853 0.851 0.842 0.873 0.847 0.839 0.782 0.855 0.864 0.864 0.855

MAE
1 57.85 59.43 - - 61.00 67.58 - - 70.16 61.26 - -
2 56.70 59.20 58.32 - 46.15 50.99 54.10 - 50.17 47.05 47.52 -
3 56.50 59.15 58.84 59.11 44.37 49.46 51.90 71.15 50.01 45.64 45.28 47.89

uRMSE
1 56.39 57.60 - - 60.95 68.82 - - 71.13 60.63 - -
2 55.40 57.55 56.67 - 46.13 50.34 53.23 - 51.04 46.70 47.20 -
3 55.41 57.67 57.17 58.19 44.35 48.87 51.18 69.90 51.00 45.19 44.83 47.40
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Results

Figure 5: Scatter plot between observed and predicted monthly rainfall over the study basin (in mm/month) for the different combinations
of p and q using hybrid Wavelet-ARX model 2.
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Results

Table 3: Relative Importance Measure for independent
variables using Wavelet-ARX model 2 (p = 3 and
q = 2) for monthly rainfall prediction.

Independent Time Series BIM (×10−6) DARIM (×10−3)

Avg. Surface Air Temp. 6.48 4.10
Precipitable Water Content 4.83 3.94
Surface Pressure 8.13 6.39
Avg. Air Temp. (925 mb) 7.14 4.76
Avg. Air Temp. (700 mb) 4.77 2.00
Avg. Air Temp. (500 mb) 4.20 -1.38
Avg. Air Temp. (200 mb) 5.03 1.04
Avg. Sp. Humidity (925 mb) 5.64 3.88
Avg. Sp. Humidity (850 mb) 4.12 1.06
Avg. Geop. Height (925 mb) 6.10 5.47
Avg. Geop. Height (500 mb) 5.64 4.53
Avg. Geop. Height (200 mb) 5.47 1.83
Avg. U Wind (925 mb) 6.06 3.29
Avg. U Wind (200 mb) 5.48 2.47
Avg. V Wind (925 mb) 5.22 0.82
Avg. V Wind (200 mb) 3.62 -1.83

BIM

Basin
Precip-
itation

Surface
Pressure

Air Tem-
perature
(925mb)

Surface
Air Tem-
perature Geop.

Height
(925mb)

U-wind
(925mb)

DARIM

Basin
Precip-
itation

Surface
Pressure

Geop.
Height
(925mb)

Air Tem-
perature
(925 mb) Geop.

Height
(500mb)

Surface
Air Tem-
perature

All
Variables
(Table 2)

R2 0.907
Dr 0.867
MAE 44.72
uRMSE 44.53

0.910
0.869
44.25
44.01

0.907
0.864
45.28
44.83
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Take Home

The association between meteorological and hydrological variables are more prominent on wavelet
component level, resulting in Wavelet-ARX model outperforming ARX model in most of the cases.

WT-ARX model 2 outperforms model 1 when exogenous input components are considered, hence,
the WT components of input/target variables at same level (same frequency bins) are more
associated.

Additionally, the relative importance analysis of meteorological variables helps in identifying the
forcings having stronger hydro-climatic association with hydrological variables.

For instance, the meteorological variable having highest association with total monthly precipitation
in UMB are surface pressure, average geo-potential height at 925mb, average air temperature at
925mb, average geo-potential height at 500mb and average surface air temperature.
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A B S T R A C T

Interaction between meteorological and hydrologic processes is challenging to model owing to their high spatio-
temporal variability. The understanding of their associations can help to ensure future fresh water security with
changing climate. In this study, due to continuously evolving nature of these interactions, the hydrological and
meteorological variables are studied on wavelet component level. Multi-Resolution Stationary Wavelet
Transformation (MRSWT) is used to transform the independent (climatic variable) and dependent (hydrological
variable) time series into their components. The components of the dependent time series are modeled using a
kernel-based auto-regressive (AR) model for separating their memory part. The residuals are hypothesized to be
the effect of interaction of predictor variables and thus, are modeled using the MRSWT components of me-
teorological variables in an auto-regressive model with exogenous inputs (ARX). Finally, the predicted residuals
(effect of climatic variables) are added to the component estimated by kernel-based AR estimator (memory of
dependent series components) to obtain the predicted components of the dependent hydrologic variable, which
are then inverse-transformed to obtain the predicted dependent hydrologic variable. The developed hybrid
Wavelet-ARX is found to capture the information about relationship between synthetically generated data better
than a simple ARX model. The model is then applied to predict total monthly rainfall over Upper Mahanadi Basin
and is found to effectively extract the information from the poorly associated hydro meteorological variables.
While the potential of Wavelet-ARX is found to be impressive for hydro meteorological applications, ad-
ditionally, discarding some climatic inputs on the basis of their relative importance may lead to better prediction
by the developed model. The developed model is suitable for extracting climatic forcings and is desirable in a
changing climate.

1. Introduction

Meteorological and hydrological processes mutually affect each
other at global and local scales. The linkage between meteorological
variables with hydrological variables at a local scale (hereafter hydro-
meteorological association) is expected to vary both with time and
space. Due to its continuously evolving characteristics, such interac-
tions or associations are difficult to model (Khaliq et al., 2006; Maity
and Nagesh Kumar, 2008; Ishak et al., 2012; Shih et al., 2014). In this
study, a generalized hybrid model based on wavelet transformation and
auto-regressive model with exogenous input (ARX) for capturing these
hydro-meteorological associations is developed and its potential is in-
vestigated. The developed model is also used to figure out the climatic
variables that are more important in terms of hydro-meteorological

association as far as rainfall is concerned in the basin.
It is hypothesized that the inter-relationship between meteor-

ological predictor variables and the hydrologic variable (predictand) is
continuously evolving over time. Different predictor variables may
have different extent of influence on the predictand variables that may
not be visible in amplitude-time domain of signal. These inter-re-
lationships between predictor and predictand variables may have more
prominent existence at some (if not all) frequency bands of predictand
as compared to the original time series of the predictand variable.
Hence, the inter-relationships are better captured at its constituent
wave levels. The Wavelet Transformation (WT) is one of the potential
choices to separate or decompose the constituent wavelets from de-
pendent and independent time series. The components of the decom-
posed dependent time series are the manifestation of some innate

https://doi.org/10.1016/j.jhydrol.2019.123918
Received 5 April 2017; Received in revised form 19 February 2019; Accepted 3 July 2019
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Wavelet Transform

Need of Transform – The usual representation
(Amplitude vs Time) is not always the best for
analysis.

Help in separating slow moving and fast moving
components of time series.

Wavelet Transform (WT) : transforms signals
into coefficients of scaled and shifted version of
wavelet function.

Due to finite domain, scaling and shifting of
wavelet function enable it to catch most of in-
termittent disturbances of different durations.

WT represents the signal in terms of frequency
and time domain.

Unlike Fourier transform, WT provide the tem-
poral information along with frequency informa-
tion.

Well suited for the study of multi-scale, non-
stationary signals (Daubechies, 1992; Burrus et al.,
1998).

Multi-Resolution Wavelet Transform (MRWT):
WT can again be applied on approximate com-
ponent to produce components at even lower
level or frequency ranges (Burrus et al., 1998).

WT are of many types based different shifting
and scaling schemes

I Continuous Wavelet Transform (CWT)
I Discrete Wavelet Transform (DWT)
I Stationary Wavelet Transform (SWT)
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Wavelet Function
Wavelet functions are finite domain square-integrable disturbance of unit energy and zero mean
amplitude. Ex.- Haar, Daubechies, Morlet etc.∫

ψ(t)dt = 0
∫∫

|ψ(t)|2 dt = 1

Wavelet functions can separate only one half (higher) of frequency range, hence, they have another
function called scaling function to separate the other half frequency range from signal.
Haar wavelet:

Figure 6: a) Haar wavelet function b) Corresponding scaling fuction
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Continuous Wavelet Transform
If ψ(t) is wavelet function then its shifted and scaled functions (ψa,b(t)) are obtained as:

ψa,b(t) = 1√
a
ψ

(
t− b

a

)
(1)

where a ∈ R+, and b, t ∈ R. a and b are scaling and shifting parameters respectively. Wavelet transform
is given by:

Wf (a, b) = 1√
Cψ

∫
f(t)ψ∗

a,b(t)dt (2)

where the ∗ denotes complex conjugate, Cψ = 2π
∫ ∣∣∣ψ̂(ω)

∣∣∣2
/ωdω. Thêdenotes the Fourier transform

ψ̂(ω) =
∫
e−iωtψ(t)dt/

√
2π.

If the basis wavelet or mother wavelet ψ(t) is orthogonal (Daubechies, 1992), then the inverse of wavelet
transformation is given by:

f(t) = 1√
Cψ

∫∫
Wf (a, b)ψa,b(t)

a2 da db (3)
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Dyadic Discrete Wavelet Transform

DWT is formed when shifting and scaling parameters are taken discrete. The discrete wavelet if sampled
over dyadic space, time grid, then they are called dyadic discrete wavelets (Cao et al., 1995).

ψa,b(t) = 1√
2j
ψ

(
t

2j − k

)
(4)

where j, k ∈ Z. The DWT is similar to CWT but it is applied in discrete terms.

As per Nyquist– Shannon sampling theorem, subband coding (downsampling by avoiding every second
sample) is carried out to avoid redundancy in component series as suggested by following relation:

NoBc = NcBo (5)

where N and B shown length and bandwidth of signal. Subscript o and c mean parent and component
series. Hence, Nc = No/2

Mayank Suman & Rajib Maity (IITKGP) EGU 2020 May 8, 2020 5 / 13



Stationary Wavelet Transform

SWT is specially designed to avoid the transition-invariance of DWT.

SWT achieves transition-variance by avoiding down-sampling of components as per Nyquist–Shannon
sampling theorem and up-sampling the filter coefficient.

Despite redundancies in components, SWT reduces the complexity of signal analysis as both input
signal and its components have equal length.

In this study, the SWT is used as preferred WT.
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Filter theory basis of DWT and SWT

DWT or SWT can be applied as pair of high
pass and low pass filters.

High pass filter is obtained from wavelet func-
tion and low pass filter is obtained from corre-
sponding scaling function.

Component from high pass filter is called de-
tailed component and other is called approxi-
mate component.

The approximate and detailed components show
trend and local disturbance respectively in the
parent signal.

Wavelet components at time t is projection of f(t)
over daughter wavelet functions.

Wf (a, b) = 1√
Cψ

∫
f(t)ψ∗

a,b(t)dt (6)

Given constant j, the equation is convolution of
f(t) with dilated, reflected and normalized mother
wavelet h(t) = 1

2j ψ
( −t

2j

)
. For reference convolution

between p(t) and q(t) is given by

(p ∗ q)(t) =
∫ ∞

−∞
p(τ)g(t− τ)dτ (7)

Hence, for Haar wavelet, the dilated reflected and
normalized filters are h = 1√

2 [1,−1] and
g[n] = 1√

2 [1, 1].
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Multi-Resolution Wavelet Transform
Multi-Resolution Wavelet Transform (MRWT) provides the detailed and approximate components at
even lower levels by using low pass filter component from higher level as input to wavelet transform
at each subsequent level.

MRWT enhances the accuracy of prediction.

The MRWT is named on the basis of the wavelet transform algorithm being used repeatedly like
Multi-Resolution Discrete Wavelet Transform (MRDWT) or Multi-Resolution Stationary Wavelet
Transform (MRSWT).

Irrespective of WT used, after application of MRWT a function can be represented as

f(t) =
∑
k

an,kϕn,k(t) +
n∑
j=1

∑
k

dj,kψj,k(t) (8)

where an,k is called the coarse or approximate coefficient and dj,k is called the detailed component
or wavelet coefficient at level j. The n is the maximum level of decomposition of MRWT, k denotes
the shift parameter of wavelet functions.
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Scaling parameter
Scale parameter (a) is inversely related to the wave frequency.
High scale or low frequency corresponds to non-detailed global view (of the signal), and low scale
or high frequency corresponds to detailed view.
Dilate (a > 1) or compress (a < 1) mother wavelet function.

Figure 7: Graphical representation of sine signal of different scales.
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Common wavelet functions

Discrete Wavelet Functions

Continuous Wavelet Functions
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Kernel Estimator

Non-parametric estimators for estimating probability distribution of a given data set.
The components of hydrological time series are estimated as

ãn(m+ 1) =

∑m
t=1 an(t)K

(
t−(m+1)

h

)
∑m
t=1 K

(
t−(m+1)

h

) (9a)

d̃j(m+ 1) =

∑m
t=1 dj(t)K

(
t−(m+1)

h

)
∑m
t=1 K

(
t−(m+1)

h

) (9b)

where K represents kernel function, and parameter h is the window of the kernel function. Naïve
kernel function (Maity and Nagesh Kumar, 2008; Bosq, 2012) is used in this study.
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Different Kernel Functions

Naïve

K(u) = 1
for − 0.5 ≤ u ≤ 0.5

Normal

K(u) = 1√
2π exp

(
−u2

2

)
for − ∞ ≤ u ≤ ∞

Epanechnikov

K(u) = 3
4

√
5

(
1 − u2

5

)
for −

√
5 ≤ u ≤

√
5
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ARX Model

Ac,y(t) =
p∑
k=1

SkAc,y(t− p) +
c∑
l=1

q∑
j=0

Tl,jCx,l(t− j) + E (10)

where the number of auto-regressive terms and exogenous inputs are represented by p and q respectively.
Ac,y(t) is tth time step residual in any one component of the dependent variable Y ,
Cx represents the set of selected individual components of the independent variable set X, and
c represent the number of members in set Cx or cardinal number of Cx.
Cx,l represents lth member of Cx.
S and T represent the set of regression parameters estimated during model calibration period.
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