

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

On new developments in accelerator mass spectrometry

Julia Gottschalk, R.F. Anderson, D.A. Hodell, A. Martinez-Garcia, A. Mazaud, E. Michel, L.C. Skinner, A. Studer, S. Szidat, L.M. Thöle, and S.L. Jaccard

Marcott et al., 2014; Bereiter et al., 2015; Schmitt et al., 2012; Reimer et al., 2013; Hain et al., 2014 **Problem:** The drivers of past atmospheric CO_2 variations remain one of the strongly debated and researched topics in paleoclimatology. Helpful clues can be gained from assessing the mechanisms changing the carbon isotopic composition of $CO_{2,atm}$.

 δ^{13} C composition of atmospheric CO₂: Schmitt, et al., 2012. Carbon isotope constraints on the deglacial CO₂ rise from ice cores. Science 336 (6082), 711–714. https://doi.org/10.1126/science.1217161

 Δ^{14} C composition of atmospheric CO₂ (black) Reimer, et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55 (4), 1869–1887. <u>https://doi.org/10.2458/azu_js_rc.55.16947</u>

Production-driven Δ^{14} C changes (light blue): Hain, et al., 2014. Distinct roles of the Southern Ocean and North Atlantic in the deglacial atmospheric radiocarbon decline. Earth Planet. Sci. Lett. 394, 198–208. <u>https://doi.org/10.1016/j.epsl.2014.03.020</u>

Atmospheric CO₂:

Marcott, et al., 2014. Nature 514 (7524), 616 -619. https://doi.org/10.1038/nature13799;Bereiter, et al., 2015. Revision of the EPICA Dome C CO₂ record from 800 to 600 kyr bp. Geophys. Res. Lett. 42 (2), 542–549. https://doi.org/10.1002/2014GL061957

New insights can be gained through ¹⁴C dating of various climate archives with MICADAS.

MICADAS AMS: Mini Carbon Dating System

Since the early 2000s, ETH Zurich expedited the development of an AMS system that is fitted with a gas ion source and that allows online analysis of small-size samples in gaseous form: Synal, et al., 2007. MICADAS: A new compact radiocarbon AMS system. Nucl. Instruments Methods Phys. Res. B 259, 7–13. <u>https://doi.org/10.1016/j.nimb.2007.01.138</u> Synal, 2013. Developments in accelerator mass spectrometry. Int. J. Mass Spectrom. 349–350, 192–202. <u>https://doi.org/10.1016/j.ijms.2013.05.008</u>

Pioneering work to improve non-graphitization analyses of diverse samples with MICADAS has shown promising outcomes, demonstrating the feasibility of analyses of samples as small as 1μg C (~8 μg CaCO₃) and single benthic foraminifera: e.g., Wacker, et al., 2013. Towards radiocarbon dating of single foraminifera with a gas ion source. Nucl. Instruments Methods Phys. Res. B 294, 307–310. <u>https://doi.org/10.1016/j.nimb.2012.08.038</u>

A number of labs have optimized ¹⁴C dating with MICADAS, for instance of carbonates:

<u>BernMICADAS</u>: Gottschalk, et al., 2018. Radiocarbon measurements of small-size foraminiferal samples with the Mini Carbon Dating System (MICADAS) at the University of Bern: Implications for paleoclimate reconstructions. Radiocarbon 60 (2), 469–491. <u>https://doi.org/10.1017/RDC.2018.3</u>

<u>AixMICADAS</u>: Fagault, et al., 2019. Radiocarbon dating small carbonate samples with the gas ion source of AixMICADAS. Nucl. Inst. Methods Phys. Res. B 455, 276-283. <u>https://doi.org/10.1016/j.nimb.2018.11.018</u>

ETH MICADAS: e.g., Fahrni, S., Wacker, L., Synal, H.-A., Szidat, S., 2013. Improving a gas ion source for ¹⁴C AMS.
Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 294, 320–327.
<u>https://doi.org/10.1016/j.nimb.2012.03.037</u> Ruff, et al., 2010. Gaseous radiocarbon measurements of small samples.
Nucl. Instruments Methods Phys. Res. B 268 (7–8), 790–794. <u>https://doi.org/10.1016/j.nimb.2009.10.032</u>

The MICADAS allows to skip sample graphitization (required for most AMS systems), if desired.

The MICADAS AMS provides multiple ways for injecting the sample CO₂: e.g. Wacker, et al., 2013.

A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nucl. Instruments Methods Phys. Res. B 294, 315–319. <u>https://doi.org/10.1016/j.nimb.2012.02.009</u>

- sealed glass ampoules
- dissolution of carbonate samples
- combustion of organic matter in an elemental analyzer
- gas bottles (e.g. commercially purchased)

Elimination of equal-mass molecules and molecular ambiguities is prerequisite to detect long-lived radionuclides at natural concentration. The MICADAS achieves to sufficient level through two major adjustments.

Synal, et al., 2007. MICADAS: A new compact radiocarbon AMS system. Nucl. Instruments Methods Phys. Res. B 259, 7–13. https://doi.org/10.1016/j.nimb.2007.01.138 Synal, 2013. Developments in accelerator mass spectrometry. Int. J. Mass Spectrom. 349–350, 192–202. https://doi.org/10.1016/j.ijms.2013.05.008

Ruff, M., Wacker, L., Gäggeler, H.W., Suter, M., Synal, H.-A., Szidat, S., 2007. A Gas Ion Source for Radiocarbon Measurements at 200 kV. Radiocarbon 49 (2), 307–314. <u>doi: 10.1017/S0033822200042235</u>

Second, the MICADAS has a higher density of stripping gas (He, N_2) in the stripping unit.

Charge states of >=3+ are required to dissociate equal-mass molecules. Sufficient elimination of equal-mass molecules can be achieved with charge state change of 1+ (collisional dissociation), which requires that the stripping gas density is higher than in conventional AMS.

Synal, et al., 2007. MICADAS: A new compact radiocarbon AMS system. Nucl. Instruments Methods Phys. Res. B 259, 7–13. https://doi.org/10.1016/j.nimb.2007.01.138 Synal, 2013. Developments in accelerator mass spectrometry. Int. J. Mass Spectrom. 349–350, 192–202. https://doi.org/10.1016/j.ijms.2013.05.008

These changes have led to a much more compact AMS system operating at much lower terminal voltages <500kV.

Kutschera, W., 2005. Progress in isotope analysis at ultra-trace level by AMS. Int. J. Mass Spectrom. 242 (2–3), 145–160. https://doi.org/10.1016/j.ijms.2004.10.029

Here I want to focus on ¹⁴C dating of foraminifera with MICADAS compared to traditional AMS systems (to assess its potential for ocean circulation and carbon cycle reconstructions). I will discuss:

- i) the reproducibility and precision of gas ¹⁴C measurements of small carbonate samples (i.e., foraminifera),
- ii) their consistency with conventional measurements of larger (graphitized) samples
- iii) the impact of contamination during sample preparation and analysis

Analyses are preformed in South Indian sediment core MD12-3396Q

that was obtained from a drift deposit with sediment rates >10 cm kyr⁻¹.

Gottschalk et al., 2018

Comparison between ¹⁴C age uncertainties of "conventional" AMS (graphite) vs. MICADAS (gas analyses)

*Significantly larger uncertainties of ¹⁴C ages for gas than for graphite measurements

*The average difference ranges from a factor of approx. two during the Holocene to a factor of approx. three during the last ice age

Comparison between ¹⁴C age uncertainties of "conventional" AMS (graphite) vs. MICADAS (gas analyses)

*Age uncertainties of graphite samples larger than ~250 μg C and of gas samples larger than ~40 μg C rapidly increase with ¹⁴C age

*Below those sample sizes, age uncertainties increase both as a function of increasing ¹⁴C age and decreasing sample size

*This mainly comes down to ¹⁴C counting statistics during AMS measurement

Reproducibility of replicate ¹⁴C gas measurements of *N. pachyderma* with MICADAS

*Reproducibility of gas ¹⁴C analyses: 170 ¹⁴C years 1 σ , *n*=13

*Slightly better for benthic foraminifera (130 ¹⁴C years 1 σ , *n*=4) vs. planktonic foraminifera (200 ¹⁴C years 1 σ , *n*=9)

Comparison of Graphite and Gas ¹⁴C measurements on planktonic foraminifera

* Mean standard deviation between gas and graphite ¹⁴C measurements is 170±140 yr (n=7), which is similar to their mean 1σ ¹⁴C age (140±70 yr, n=14).

* Small-size Gas and large-size graphite ¹⁴C analyses agree within 40±30 ¹⁴C yrs (*n*=5), despite a sample size difference of a factor of ~10.

Impact of contamination on MICADAS ¹⁴C dates

*It is crucial to accurately determine the mass and F-modern of contamination of the MICADAS that has a strong effect on small and/or old samples

*This can be done by determining the changes in a modern(-ish) and ¹⁴C-free standard with sample size: Hua, et al., 2004. Small-mass AMS radiocarbon analysis at ANTARES. Nucl. Instruments Methods Phys. Res. B 223–224, 284–292. <u>https://doi.org/10.1016/j.nimb.2004.04.057</u>

*A modern certified carbonate standard that can be measured with the gas interface and used by the community should be implemented (see example in <u>Fagault et al., 2019</u>)

MICADAS ¹⁴C analyses can be a game changer for ocean circulation and carbon cycle reconstructions in sample-limited archives.

But the sedimentation rate and foraminiferal abundances should be carefully assessed and measurements should be optimized to minimize potential biases (both of analytical and sedimentary origin).

Recommendations for MICADAS ¹⁴C analyses:

- *Obtain foraminiferal abundance changes in sediment core prior to dating/picking
- *Measure foraminifera from abundance maxima (to circumvent biases from bioturbation)
- *Benthic and planktic foraminiferal samples (for ventilation age reconstructions) should be size-matched, especially when they are very small (<250 μg CaCO₃)
- *Perform replicate analyses, where possible
- *Determine background and contamination levels for your local MICADAS
- *Community-wide efforts to develop a modern-F¹⁴C standard to do so?

MICADAS ¹⁴C analyses can be a game changer in sample-limited archives. But the sedimentation rate and foraminiferal abundances should be carefully assessed and measurements should be optimized to minimize potential biases (both of analytical or sedimentary origin).

Recent literature on additional controls on ¹⁴C dates (e.g., bioturbation):

Missiaen, et al., 2020. Radiocarbon Dating of Small-Sized Foraminifer Samples: Insights Into Marine Sediment Mixing. Radiocarbon 62 (2), 313-333. https://doi.org/10.1017/RDC.2020.13

Ausín, et al., 2019. Radiocarbon Age Offsets Between Two Surface Dwelling Planktonic Foraminifera Species During Abrupt Climate Events in the SW Iberian Margin Paleoceanography and Paleoclimatology. Paleoceanogr. Paleoclimatology 34, 63–78. https://doi.org/10.1029/2018PA003490

Lougheed, et al., 2018. Moving beyond the age-depth model paradigm in deep sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single foraminifera. Clim. Past 14, 515–526. https://doi.org/10.5194/cp-14-515-2018

> Thanks for reading! I am looking forward to comments/questions/concerns. **@Jul_Gottschalk**

