Causality and information transfer in systems with extreme events

Milan Paluš

Department of Complex Systems
Institute of Computer Science, Czech Acad. Sci.
Prague, Czech Republic
E-Mail: mp@cs.cas.cz

Support:

Praemium Academiae, Czech Academy of Sciences Czech Science Foundation, project GA19-16066S

Causality analysis: Can we identify causes of observed phenomena?

Granger causality

C. Granger, 2003 Nobel prize in economy

- causal variable can help to forecast the effect variable after other data has been first used
- generalization using information theory conditional mutual information (transfer entropy)
- $I(y(t); x(t+\tau)|x(t), x(t-\eta), \dots, x(t-(n-1)\eta))$
 - y(t) the cause (predictor)
 - $x(t+\tau)$ the effect (the future of the influenced variable)
 - $x(t), x(t-\eta), \dots, x(t-(n-1)\eta)$ condition removes the influence of history of the influenced variable
- ullet for Gaussian systems CMI \equiv TE \equiv Granger causality
- causality interpreted as information transfer

Mutual information

mutual information

$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

- average amount of common information, contained in the variables X and Y
- measure of general statistical dependence
- $I(X; Y) \ge 0$
- I(X; Y) = 0 iff X and Y are independent

Conditional mutual information

• conditional mutual information I(X; Y|Z) of variables X, Y given the variable Z

$$I(X; Y|Z) = H(X|Z) + H(Y|Z) - H(X, Y|Z)$$

Z independent of X and Y

$$I(X; Y|Z) = I(X; Y)$$

- I(X; Y|Z) = I(X; Y; Z) I(X; Z) I(Y; Z)
- "net" dependence between X and Y without possible influence of Z

Entropy definitions

random variable X with sets of values Ξ and PDF's p(x)

Shannon entropy

$$H(X) = -\sum_{x \in \Xi} p(x) \log p(x)$$

Rényi entropy

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \sum_{x \in \Xi} p(x)^{\alpha},$$

where $\alpha > 0$, $\alpha \neq 1$.

- As $\alpha \to 1$, $H_{\alpha}(X)$ converges to H(X) which is Shannon entropy.
- Rényi's measure satisfies $H_{\alpha}(x) \leq H_{\alpha'}(x)$ for $\alpha > \alpha'$.

Rényi entropy

Rényi order parameter $\alpha > 0$, $\alpha \neq 1$

$$p(x)^{\alpha}$$

- $\alpha >$ 1 "amplifies" center of PDF
- $0 < \alpha < 1$ "amplifies" **tails** of PDF
- tails extreme events

Can conditional mutual information (transfer entropy) in Rényi concept uncover causes of extreme events?

Experiment with Rényi CMI

DATA

- near surface air temperature (SAT) anomalies
- daily station data, example Frankfurt
 (50° 02' 47"N, 8° 35' 54"E, 112 m above sea level)
- daily NAO index
- daily blocking index for 9°E
 Tibaldi S, Molteni F (1990) On the operational predictability of blocking. Tellus 42A: 343—365

Causality in Rényi concept

Causality in Rényi concept

Causality in Rényi concept: NAO vs blocking

Experiment with Rényi CMI

RESULTS

- NAO significant causality mainly for $\alpha > 1$
- ullet blocking significant causality mainly for lpha < 1
- Rényi CMI normalized by Shannon CMI for α < 1 much larger for blocking

CAN WE INFER

- NAO is causal to temperature, but not causing extremes
- blocking is causal mainly with respect to extremes

COMPARE

- distribution of SATA for different NAO/blocking conditions
- SATA distribution with Gaussian with the same mean and variance
- tails of data vs Gaussian distribution

Conditional distributions

Conditional distributions

Conditional distributions

RESULTS

- NAO shifts means/whole histogram
- NAO does not specifically cause tails higher than normal
- blocking only slightly shifts means/whole histogram
- blocking causes tails higher than normal
- linformation-theoretic approach to causality in Rényi concept seems promising in identification of causes of extreme events
- many technical problems, however, should be solved in order to avoid false results
- research in progress, publication in preparation

CONCLUSION

Thank you for your attention

Interested in postdoc, PhD position?

Interested in part-time long distance job? (Applicable in Covid-19 border closure conditions.)

mp@cs.cas.cz http://www.cs.cas.cz/mp/

Milan Paluš mp@cs.cas.cz