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BEAMISH – Rutford Ice Stream

• Rutford Ice Stream flows at ~1 m/day into the 
Ronne Ice Shelf, West Antarctica

• Ice is over 2 km thick at this location
• The bed topography has been mapped in detail 

using Delores radar (King, 2016, ESSD) and 
shows a distinctive and rapid change in bed 
character along flow (purple line)

• Residual topography (background colour) 
highlights the transition from a linear to 
hummocky bed

• Seismic reflection profiles indicate a reversal in 
the bed reflection polarity across this 
boundary, consistent with a transition from 
dilated to more consolidated sediment

• In 2018/19 the BEAMISH team drilled to the 
bed at two sites (red stars) to instrument the 
ice column/bed and also sample the bed

• Concurrent seismic reflection (three lines) and 
AVA data (red stars) were acquired
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Flow-parallel normal incidence 
seismic reflection profile

Migrated normal incidence seismic 
reflection profile along-flow through the 
two drill sites (red arrows)

• Upstream - reverse polarity bed reflection 
• Downstream - normal polarity bed 

reflection 

Calculation of shot size and estimated 
seismic properties of ice allows 
calculation of basal acoustic impedance 
from reflection strength (Holland & 
Anandakrishnan, 2009)

• Acoustic impedance change indicates a 
transition to a more consolidated 
sediment downstream

• Yellow band is the approximate range 
associated with dilated, deforming 
sediments, including porosities in the 
range 0.35–0.45 (Atre and Bentley, 1993; 
Smith, 1997).
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Amplitude variation with bed incidence angle (AVA)
- observed and synthetic curves

• Downstream – positive reflection 
with little angle dependence

• General fit to consolidated sediment 
at the bed

• Upstream – negative reflection 
and no phase reversal with 
increasing offset

• AVO signal does not fit standard 
deforming sediment AVO signature 
as not phase reversal with offset

• No indication of thin-bed effects 
which result in significant 
amplitude variation with incidence 
angle

• But why no phase reversal in the 
bed AVA signal at the upstream 
site if it is  dilatant till (as the 
normal incidence reflection 
coefficient indicates)?
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Englacial fabric

• Weak englacial reflections within 
200 m of the bed

• Englacial reflection AVA signature 
consistent with weak ice fabric 
contrast (black dash - modelled 
following Zillmer, 1998)

• Upstream bed AVA signal does not 
show phase reversal expected for 
dilatant till (blue dash)

• Upstream bed AVA signal fits better 
with VTI ice overlying dilatant till at 
the bed (red dash) (modelled 
following Ruger, 2002)
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Conclusions Further work

• Determine likely fabric transitions in basal 
ice

• Match AVA signature of bed to likely basal 
ice fabric to improve fit at far offsets

• Compare seismic observations to ongoing 
bed-sample analysis results

• Preliminary seismic normal incidence and AVA 
results indicate a dilated basal sediment 
transitioning to a more consolidated sediment 
downstream

• AVA analysis of englacial reflections indicates 
weak fabric contrasts close to the bed

• Fabric in the basal ice can modify the basal 
AVA signature to better match observations
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