

ALMA MATER STUDIORUM Università di Bologna

Didymos Gravity Science through Ground-based and Satellite-to-Satellite Doppler Tracking

Paolo Tortora¹, Igor Gai¹, Marco Lombardo¹, Marco Zannoni¹, Ian Carnelli², Michael Kueppers³, Paolo Martino⁴, and Patrick Michel⁵

University of Bologna, DIN - Aerospace Division, Forlì, Italy (paolo.tortora@unibo.it)
 ESA/HQ, 75738 Paris Cedex 15, France
 ESA/ESAC, Villanueva de la Cañada (Madrid), Spain
 ESA/ESTEC, 2200 AG Noordwijk, The Netherlands

5 Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, CS 34229, 06304 Nice Cedex 4, France

Summary

1)HERA/JUVENTAS Radio Science Concept2)Science Objectives

3)Numerical simulations of the RS experiment:

- HERA Assumptions
- JUVENTAS Assumptions

4)Radio Science Results:

- Didymain and Didymoon GM
- Didymain extended gravity
- Didymoon J_2

5)Conclusions

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 870377

HERA / JUVENTAS Radio Science Concept

- **Radio science experiments** on space missions usually exploit the information carried by radio link between the S/C and the Earth to infer data of scientific interest
- If multiple spacecraft are present, the **Inter-Satellite Link (ISL)** can be also exploited to increase the sensitivity to the parameters of interest
- Gravity science experiments:
 - Application of the orbit determination technique
 - Purpose: estimate a set of parameters which fully define the trajectory of the spacecraft and the dynamical environment

HERA

-ISL (S-band)

- Hardware required: coherent transponder (not necessarily dedicated to science)
- ISL already used for TT&C of the SmallSat (with the addition of Doppler feature)

Scheduled Range/Doppler Tracking

ully define the al environment Rangel Doppler Tracking Didymoon

Highly stable microwave carrier

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

-Coherent transponder (X-band)

Science Objectives

Measurements	Estimated Parameters	Science objectives
• Earth/Hera Range Tracking	 Didymos ephemerides in the Solar System 	 Improved heliocentric orbit Refinement of models of the non-gravitational accelerations acting on small bodies (Yarkovsky effect)
Earth/Hera Doppler Tracking.Hera Optical Observables	 Didymoon ephemerides relative to Didymain 	 Improved Didymoon orbit Dissipation and tidal evolution of asteroid binary system Balance between tides and YORP effect
 Earth/Hera Doppler Tracking. Hera Optical Observables. Hera/Juventas Doppler Tracking. 	 GM of Didymain and Didymoon Degree 2 gravity of both Higher degree gravity of Didymain 	 Bulk density Moments of inertia Gravity anomalies and density distribution
	Pole orientationRotational dynamics	 Moments of inertia YORP effect Coupling between orbital and rotational dynamics

Numerical Simulations

- Numerical simulations of HERA Radio Science Experiment:
 - Assess the feasibility of Radio Science investigations of the Didymos system
 - Provide a preliminary evaluation of the experiment performances
 - Identify the main driving parameters which affect the performances, providing reference values which maximize the scientific return of the mission
- Gravity science experiment: particular application of spacecraft orbit determination

HERA Trajectory and Observables Assumptions

- Mission concept similar to Rosetta: HERA-Didymos orbit consists of a series of hyperbolic arcs connected by impulsive maneuvers
- This strategy is much more flexible and offers the following operational advantages:
 - Lower sensitivity to errors in gravity potential
 - Lower sensitivity to errors in the maneuvers
 - More favorable illumination conditions, both for science and optical navigation
 - Safe escape trajectory in case of S/C problems
- During this study, **the same strategy was adopted for the radio science investigations**, which should be performed during a limited number of hyperbolic arcs connected to a pyramid-like trajectory
- The following **constraints on Hera** during radio science arcs apply:
 - No optical measurements can be acquired during tracking periods (HGA to Earth)
 - Maximum Sun phase angle to acquire pictures of Didymos: 60 deg
 - No thruster maneuvers during arcs

HERA Trajectory (Didymoon Orbit-Normal Equinox)

JUVENTAS Trajectory and Observables Assumptions

- Sun Syncronous Terminator Orbits (SSTO) at 2 km altitude from Didymain
- The following **constraints on Juventas** during radio science arcs apply:
 - Continuous HERA-JUVENTAS ISL (Inter-Satellite Link) with scheduled Duty Cycle
 - If ISL from HERA is done using quasi-omnidirectional S-band patch antennas, then there is **no need for fixed attitude during dedicated tracking time**.
 - No thruster maneuvers.
 - ISL Ranging noise: 50 cm.
 - ISL Doppler noise: 50 microns/s @60 s integration time.
 (Fully feasible by the existing system produced for PROBA-3 by TEKEVER PT)
- Juventas data volume negligible: the Doppler data would be acquired and generated onboard HERA.
 - The only data generated onboard Juventas are a few HK parameters.

JUVENTAS Trajectory (Didymoon Orbit-Normal)

Simulated Scenarios

Scenarios:

a) Hera only:

- Range+Doppler (Earth/Hera) and Optical (max Sun phase angle: 60 deg)
- b) Hera + Juventas (Range):
 - Hera Range+Doppler (Earth/Hera) and Optical (max Sun phase angle: 60 deg)
 - Hera/Juventas ISL Range only
- c) Hera + Juventas (Doppler):
 - Hera Range+Doppler (Earth/Hera) and Optical (max Sun phase angle: 60 deg)
 - Hera/Juventas ISL Range+Doppler:

ISL Duty Cycles:

- 100%: Duty cycle 5min/5min
- 60%: Duty cycle 3min/5min
- 20%: Duty cycle 1min/5min

Results: Didymain mass

 (\mathbf{i})

RY

CC

11

ABORATORY-

Results: Didymoon mass

 (\mathbf{i})

CC

PLANETARY EXPLORATION

BORATORY-

Results: Didymain gravity field

- HERA only does not allow to estimate Didymain's gravity field
- The addition of ISL Ranging improves (negligibly) the attainable uncertainties
- ISL Doppler allows to estimate degree 2 and 3
- With 100% of Duty Cycle degree 4 becomes observable

CC

Conclusions

- The HERA gravity science experiment at Didymos **proves feasible**, using realistic assumptions on the technological capabilities of the space and ground segment
- Optical Navigation (OPNAV) images are essential to estimate Hera's trajectory
- The addition of Juventas in orbit in the binary system increases the overall accuracies, and gives access to the degree 3-4 gravity field of Didymain and degree 2 of Didymoon (at least)
- Hera-Juventas ISL Doppler enables to estimate the extended gravity field of Didymain and (marginally) Didymoon:
 - Didymain max observable degree: 3-4 (20%-100% DC)
 - Didymoon: J2 uncertainty 3-9% (20%-100% DC)

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Thank you!

paolo.tortora@unibo.it

www.unibo.it