General Assembly of the European Geosciences Union Vienna, Austria, 4-8 May 2020

Session G1.1 - Recent Developments in Geodetic Theory

Laplacian Structure, Solution
 Domain Geometry and Successive Approximations in Gravity Field Studies

Petr Holota - Otakar Nesvadba

Research Institute of Geodesy, Topography and Cartography Zdiby, Prague-East, Czech Republic

Land Survey Office Prague, Czech Republic

1. Introduction

Green's functions are an important tool in solving problems of mathematical physics. Equally this holds in gravity field studies.
\bullet
Green's function is an integral kernel, which, convolved with input values, gives the solution of the particular problem considered.

Regarding its construction, there exist elegant and powerful methods for one or two dimensional problems.

However, only very few of these methods carried over to higher dimensions. The higher the dimension of the Euclidean space the simpler the boundary of the region of interest had to be.

In order to preserve the benefit of the Green's function method an approximation procedure is discussed. Our aim is to implement the procedure with the particular focus on the solution of the LGBVP (Linear gravimetric boundary value problem) and on the related functional analytic aspects.

2. Linear Gravimetric Boundary-Value Problem

For this problem the solution domain Ω is the exterior of the Earth and the problem means to find T such that

$$
\begin{gathered}
\Delta T=\operatorname{div} \operatorname{grad} T=0 \quad \text { in } \quad \Omega \\
\frac{\partial T}{\partial \boldsymbol{s}}=\langle\boldsymbol{s}, \operatorname{grad} T\rangle=-\delta g \quad \text { on } \quad \partial \Omega
\end{gathered}
$$

where

$$
s=-\frac{1}{\gamma} \operatorname{grad} U
$$

\langle,$\rangle is the inner product, \Delta$ means Laplace's operator and $\partial \Omega$ is the boundary of Ω.

Note that $T=W-U$ is the disturbing potential and $\delta g=g-\gamma$ the gravity disturbance, where with W and U we identify the gravity and a normal potential of the Earth.

To be more specific, we recall the classical theory of normal gravity referred to a level ellipsoid with semiaxes a and b, $a \geq b$ and the linear eccentricity $E=\sqrt{a^{2}-b^{2}}$.

- In this case we can introduce ellipsoidal coordinates u, β, λ related to Cartesian coordinates x_{1}, x_{2}, x_{3} by the equations

$$
x_{1}=\sqrt{u^{2}+E^{2}} \cos \beta \cos \lambda, x_{2}=\sqrt{u^{2}+E^{2}} \cos \beta \sin \lambda, x_{3}=u \sin \beta .
$$

- In addition we will suppose that a function $h(\beta, \lambda)$ describes the boundary $\partial \Omega$ of Ω with respect to the level ellipsoid $u=b$, i.e. $\partial \Omega$ is represented by

$$
\begin{aligned}
& x_{1}=\sqrt{[b+h(\beta, \lambda)]^{2}+E^{2}} \cos \beta \cos \lambda, \\
& x_{2}=\sqrt{[b+h(\beta, \lambda)]^{2}+E^{2}} \cos \beta \sin \lambda, \\
& x_{3}=[b+h(\beta, \lambda)] \sin \beta .
\end{aligned}
$$

Now we return to the LGBVP (Linear Gravimetric Boundary-Value Problem). We can interpret the boundary condition

$$
\frac{\partial T}{\partial \boldsymbol{s}}=\langle\boldsymbol{s}, \operatorname{grad} T\rangle=-\delta g \quad \text { on } \quad \partial \Omega
$$

in terr is of a derivative of T with respect to u, i.e.

$$
\frac{\partial T}{\partial u}=-w(b+h, \beta) \delta g \quad \text { on } \quad \partial \Omega
$$

where

$$
w(u, \beta)=\sqrt{\frac{u^{2}+E^{2} \sin ^{2} \beta}{u^{2}+E^{2}}} .
$$

In solving the LGBVP a transformation of coordinates will be applied.

This will open a way for an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution.

3. Transformation of Coordinates and an Attenuation Function

Our starting point will be the mapping as above, i.e.

$$
\begin{aligned}
& x_{1}=\sqrt{u^{2}+E^{2}} \cos \beta \cos \lambda \\
& x_{2}=\sqrt{u^{2}+E^{2}} \cos \beta \sin \lambda \\
& x_{3}=u \sin \beta
\end{aligned}
$$

but with

$$
u=z+\omega(z) h(\beta, \lambda)
$$

where z is a new coordinate and $\omega(z)$ is a twice continuously differentiable attenuation function defined for $z \in[b, \infty)$, such that

$$
\begin{gathered}
\omega(z) h(\beta, \lambda)>-b \\
\omega(b)=1, \quad \frac{d \omega}{d z}(b)=0
\end{gathered}
$$

and

$$
\omega(z)=0 \quad \text { for } \quad z \in\left[z_{\text {ext }}, \infty\right), \quad \text { where } \quad b<z_{\text {ext }}
$$

Stress that the assumption concerning the continuity of ω and its 1 st and the 2nd derivatives implies
$\lim \omega(z)=0, \quad \lim \frac{d \omega(z)}{d z}=0, \quad \lim \frac{d^{2} \omega(z)}{d z^{2}}=0$ for $z \rightarrow z_{\text {ext }}^{-}$.
Note: z, β, λ form a system of new curvilinear coordinates and for

$$
\frac{d u}{d z}=1+\frac{d \omega}{d z} h>0
$$

the transformation is a one-to-one mapping between Ω and the outer space $\Omega_{\text {ell }}$ of our oblate ellipsoid of revolution.

The construction of the attenuation function $\omega(z)$ in the interval [$b, z_{\text {ext }}$), i.e. for $b \leq z<z_{\text {ext }}$, deserves some attention. Here we give an example (applied in this work). We put

$$
\omega(z)=\exp \left[2-\frac{2(\Delta z)^{2}}{(\Delta z)^{2}-(z-b)^{2}}\right], \text { where } \Delta z=z_{e x t}-b
$$

i.e.

$$
\omega(z)=\mathrm{e}^{\left[2-\frac{2(\Delta z)^{2}}{(\Delta z)^{2}-(z-b)^{2}}\right]} \text { with } \mathrm{e} \approx 2,71828
$$

The attenuation function and its derivatives are demonstrated on the following slide.

Attenuation Function

1st Derivative of the Attenuation Function

2nd Derivative of the Attenuation Function

4. Transformation of the Boundary Condition

In the coordinates z, β, λ the boundary $\partial \Omega$ is defined by $z=b$ and its image $\partial \Omega_{\text {ell }}$ coincides with our oblate ellipsoid.
In addition the transformation changes the formal representation of the LGBVP. Indeed, the boundary condition turns into

$$
\frac{\partial T}{\partial z}=-w[z+\omega(z) h(\beta, \lambda)] \delta g \quad \text { for } \quad z=b
$$

Hence, denoting by $\partial / \partial n$ the derivative in the direction of the unit (outer) normal n of $\partial \Omega_{\text {ell }}$, we obtain

$$
\frac{\partial T}{\partial n}=-\sqrt{1+\varepsilon} \delta g \quad \text { on } \quad \partial \Omega_{e l l}
$$

where

$$
\varepsilon=\frac{E^{2}\left(2 b h+h^{2}\right) \cos ^{2} \beta}{\left(a^{2} \sin ^{2} \beta+b^{2} \cos ^{2} \beta\right)\left[(b+h)^{2}+E^{2}\right]}
$$

may practically be neglected.

5. Laplacian and Topography-Dependent Coefficients

It is somewhat more complicated to express Laplace's operator of T in terms of the coordinates z, β, λ, which do not form an orthogonal system. We will use the tensor calculus. Recalling

$$
\begin{aligned}
& x_{1}=\sqrt{[z+\omega(z) h(\beta, \lambda)]^{2}+E^{2}} \cos \beta \cos \lambda, \\
& x_{2}=\sqrt{[z+\omega(z) h(\beta, \lambda)]^{2}+E^{2}} \cos \beta \sin \lambda, \\
& x_{3}=[z+\omega(z) h(\beta, \lambda)] \sin \beta
\end{aligned}
$$

and putting $y_{1}=z, y_{2}=\beta, y_{3}=\lambda$, we easily deduce that the Jacobian

$$
J=\left|\frac{\partial x_{i}}{\partial y_{j}}\right|=-\left(1+\frac{d \omega}{d z} h\right)\left[(z+\omega h)^{2}+E^{2} \sin ^{2} \beta\right] \cos \beta<0,
$$

apart from its zero values for $\beta=-\pi / 2$ and $\pi / 2$. Thus, the transformation is a one-to-one mapping.

Moreover, for Laplace's operator Δ applied on T we generally have

$$
\Delta T=\frac{1}{\sqrt{g}} \frac{\partial}{\partial y_{i}}\left(\sqrt{g} g^{i j} \frac{\partial T}{\partial y_{j}}\right)=g^{i j} \frac{\partial^{2} T}{\partial y_{i} \partial y_{j}}+\frac{1}{\sqrt{g}} \frac{\partial \sqrt{g} g^{i j}}{\partial y_{i}} \frac{\partial T}{\partial y_{j}} .
$$

Here $g=\left|g_{i j}\right|=J^{2}$ is the determinant related to the respective metric tensor $g_{i j}$ and $g^{i j}$ means the associated metric tensor.

After some algebra and neglecting the difference

$$
w^{2}(z+\omega h, \beta)-w^{2}(z, \beta) \leq \frac{E^{2}}{z^{2}}\left[2 \omega \frac{h}{z}+\left(\omega \frac{h}{z}\right)^{2}\right] \cos ^{2} \beta
$$

we can deduce

$$
\Delta T=\frac{z^{2}+E^{2} \sin ^{2} \beta}{(z+\omega h)^{2}+E^{2} \sin ^{2} \beta}\left[\Delta_{e l l} T-\delta(T, h)\right]
$$

where

$$
\begin{aligned}
& \Delta_{e l l} T=\frac{1}{z^{2}+E^{2} \sin ^{2} \beta}\left[\left(z^{2}+E^{2}\right) \frac{\partial^{2} T}{\partial z^{2}}+2 z \frac{\partial T}{\partial z}+\frac{\partial^{2} T}{\partial \beta^{2}}-\frac{\sin \beta}{\cos \beta} \frac{\partial T}{\partial \beta}+\frac{z^{2}+E^{2} \sin ^{2} \beta}{\left(z^{2}+E^{2}\right) \cos ^{2} \beta} \frac{\partial^{2} T}{\partial \lambda^{2}}\right], \\
& \delta(T, h)=A_{1} \frac{\partial T}{\partial z}+A_{2} \frac{\partial^{2} T}{\partial z^{2}}+A_{3} \frac{1}{\sqrt{z^{2}+E^{2} \sin ^{2} \beta}} \frac{\partial^{2} T}{\partial z \partial \beta}+A_{4} \frac{w(z+\omega h, \beta)}{\sqrt{z^{2}+E^{2}} \cos \beta} \frac{\partial^{2} T}{\partial z \partial \lambda}
\end{aligned}
$$

and A_{i} are topography dependent coefficients given by

$$
\begin{gathered}
A_{1}=\left(1+\frac{d \omega}{d z} h\right)^{-1}\left[2\left(\frac{d \omega}{d z}-\frac{\omega}{z}\right) \frac{z h}{z^{2}+E^{2} \sin ^{2} \beta}+\omega \Delta_{E} h\right]- \\
-2\left(1+\frac{d \omega}{d z} h\right)^{-2} \omega \frac{d \omega}{d z}\left|\boldsymbol{g r a d}_{E} h\right|^{2}+\left(1+\frac{d \omega}{d z} h\right)^{-3}\left[\frac{(z+\omega h)^{2}+E^{2}}{z^{2}+E^{2} \sin ^{2} \beta}+\omega^{2}\left|\boldsymbol{g r a d}_{E} h\right|^{2}\right] \frac{d^{2} \omega}{d z^{2}} h
\end{gathered}
$$

$A_{2}=\left(1+\frac{d \omega}{d z} h\right)^{-2}\left\{2\left(\frac{d \omega}{d z}-\frac{\omega z}{z^{2}+E^{2}}\right) h+\left[\left(\frac{d \omega}{d z}\right)^{2}-\frac{\omega^{2}}{z^{2}+E^{2}}\right] h^{2}\right\} \frac{z^{2}+E^{2}}{z^{2}+E^{2} \sin ^{2} \beta}-$

$$
-\left(1+\frac{d \omega}{d z} h\right)^{-2} \omega^{2}\left|\boldsymbol{g r a d}_{E} h\right|^{2}
$$

$A_{3}=\left(1+\frac{d \omega}{d z} h\right)^{-1} \frac{2 \omega}{\sqrt{z^{2}+E^{2} \sin ^{2} \beta}} \frac{\partial h}{\partial \beta}, A_{4}=\left(1+\frac{d \omega}{d z} h\right)^{-1} \frac{2 \omega w(z+\omega h, \beta)}{\sqrt{z^{2}+E^{2}} \cos \beta} \frac{\partial h}{\partial \lambda}$
with

$$
\left|\boldsymbol{g r a d}_{E} h\right|^{2}=\frac{1}{z^{2}+E^{2} \sin ^{2} \beta}\left[\left(\frac{\partial h}{\partial \beta}\right)^{2}+\frac{z^{2}+E^{2} \sin ^{2} \beta}{\left(z^{2}+E^{2}\right) \cos ^{2} \beta}\left(\frac{\partial h}{\partial \lambda}\right)^{2}\right]
$$

and

$$
\Delta_{E} h=\frac{1}{z^{2}+E^{2} \sin ^{2} \beta}\left[\frac{\partial^{2} h}{\partial \beta^{2}}-\frac{\sin \beta}{\cos \beta} \frac{\partial h}{\partial \beta}+\frac{z^{2}+E^{2} \sin ^{2} \beta}{\left(z^{2}+E^{2}\right) \cos ^{2} \beta} \frac{\partial^{2} h}{\partial \lambda^{2}}\right]
$$

being the 1st and the 2nd Beltrami differential operators.

6. Linear GBVP and Neumann's Function

The disturbing potential T is a harmonic function in the original solution domain Ω. In the space of the curvilinear coordinates z, β, λ, therefore, T satisfies Laplace's equation $\Delta T=0$ for $z>b$. This yields

$$
\Delta_{\text {ell }} T=\delta(T, h) \quad \text { for } \quad z>b
$$

where
$\delta(T, h)=A_{1} \frac{\partial T}{\partial z}+A_{2} \frac{\partial^{2} T}{\partial z^{2}}+A_{3} \frac{1}{\sqrt{z^{2}+E^{2} \sin ^{2} \beta}} \frac{\partial^{2} T}{\partial z \partial \beta}+A_{4} \frac{w(z+\omega h, \beta)}{\sqrt{z^{2}+E^{2}} \cos \beta} \frac{\partial^{2} T}{\partial z \partial \lambda}$.
Hence the linear gravimetric boundary value problem attains the form

$$
\begin{gathered}
\Delta_{\text {ell }} T=f \quad \text { in } \quad \Omega_{\text {ell }} \\
\frac{\partial T}{\partial n}=-\sqrt{1+\varepsilon} \delta g \quad \text { on } \quad \partial \Omega_{\text {ell }}
\end{gathered}
$$

where $f=\delta(T, h)$ and ε may be omitted.

Neglecting the fact that $f=\delta(T, h)$ depends on T, we can represent the solution of the problem formally by means of a classical apparatus of mathematical physics.
Indeed, we may construct the respective Green's function of the second kind $N(\boldsymbol{x}, \boldsymbol{y})$, which solves Neumann's boundary value problem for the domain $\Omega_{\text {ell }}$. Then (formally)

$$
T(\boldsymbol{y})=\frac{1}{4 \pi} \int_{\partial \Omega_{e l l}} \delta g(\boldsymbol{x}) N(\boldsymbol{x}, \boldsymbol{y}) d_{x} S-\frac{1}{4 \pi} \int_{\Omega_{e l l}} f(\boldsymbol{x}) N(\boldsymbol{x}, \boldsymbol{y}) d_{x} V
$$

7. Iteration Process

Nevertheless, Neumann's function $N(\boldsymbol{x}, \boldsymbol{y})$ can also be used to solve the transformed LGBVP, where $f=\delta(T, h)$ depends on T. In this case the integral formula above represents an integrodifferential equation for T.

For clarity we can put

$$
\begin{gathered}
F(\boldsymbol{y})=\frac{1}{4 \pi} \int_{\partial \Omega_{e l l}} \delta g(\boldsymbol{x}) N(\boldsymbol{x}, \boldsymbol{y}) d_{x} S \\
K T(\boldsymbol{y})=-\frac{1}{4 \pi} \int_{\Omega_{e l}} \delta[T(\boldsymbol{x}), h(\boldsymbol{x})] N(\boldsymbol{x}, \boldsymbol{y}) d_{x} V
\end{gathered}
$$

where $F(y)$ is a harmonic function and $K T(y)$ is an integrodifferential operator applied on T, such that

$$
\Delta_{\text {ell }} K T=\delta(T, h) \text { in } \quad \Omega_{\text {ell }} \quad \text { and } \quad \frac{\partial K T}{\partial n}=0 \quad \text { on } \quad \partial \Omega_{\text {ell }} .
$$

Under this notation the problem is to find T from

$$
T=F+K T .
$$

We apply the method of successive approximations, i.e.

$$
T=\lim _{n} T_{n}, \quad T_{n}=F+K T_{n-1}
$$

where T_{0} is the starting approximation, e.g. $T_{0}=F$.

8. Function Spaces and Estimates of a Particular Solution of Poisson's Equation

Our aim is to examine whether the iteration process converges. The investigation will be based on Banach's fixed point theorem interpreted for functions from a Sobolev weight space.
Let $W_{2}^{(1)}\left(\Omega_{\text {ell }}\right)$ be a Sobolev weight space equipped by the norm

$$
\|u\|_{1}=\left[\int_{\Omega_{e l l}} \frac{1}{z^{2}} u^{2} d V+\int_{\Omega_{e l}}|\boldsymbol{g r a d} u|^{2} d V\right]^{1 / 2},
$$

Similarly, let $W_{2}^{(2)}\left(\Omega_{\text {ell }}\right)$ be a Sobolev weight space with the norm

$$
\begin{equation*}
\|u\|_{2}=\left[\|u\|_{1}+\sum_{i=1}^{3} \int_{\Omega_{e l l}}\left|\boldsymbol{\operatorname { g r a d }}\left(\operatorname{grad}_{i} u\right)\right|^{2} d V\right]^{1 / 2} . \tag{1}
\end{equation*}
$$

It is obvious that $W_{2}^{(2)}\left(\Omega_{\text {ell }}\right) \subset W_{2}^{(1)}\left(\Omega_{\text {ell }}\right)$.

The crucial point for the use of Banach's theorem is to show that the operator K is a contraction mapping. In our case it means to show that there is a constant $\alpha<1$ such that the inequality

$$
\|K u-K v\|_{2} \leq \alpha\|u-v\|_{2}
$$

holds for arbitrary functions u and v from $W_{2}^{(2)}\left(\Omega_{\text {ell }}\right)$, provided that also F belongs to $W_{2}^{(2)}\left(\Omega_{\text {ell }}\right)$. Considering the linearity of the operator K, we can see that it is enough to show that

$$
\left\|K T^{\prime}\right\|_{2} \leq \alpha\left\|T^{\prime}\right\|_{2}
$$

with $\alpha<1$ holds for any T^{\prime} from $W_{2}^{(2)}\left(\Omega_{\text {ell }}\right)$, still provided that F belongs to $W_{2}^{(2)}\left(\Omega_{\text {ell }}\right)$.

Recall that in our investigation we particularly have

$$
\begin{equation*}
u(\boldsymbol{y})=K T^{\prime}(\boldsymbol{y})=-\frac{1}{4 \pi} \int_{\Omega_{e l l}} \delta\left[T^{\prime}(\boldsymbol{x}), h(\boldsymbol{x})\right] N(\boldsymbol{x}, \boldsymbol{y}) d_{x} V \tag{2}
\end{equation*}
$$

We will study first how the estimate u by means of δ.
From the fundamental properties of Neumann's function it can be deduced that u is a solution of the following boundary-value problem

$$
\begin{equation*}
\Delta_{\text {ell }} u=\delta\left(T^{\prime}, h\right) \quad \text { for } \quad z>b \text {, i.e. } \boldsymbol{y} \in \Omega_{\text {ell }} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial n}=0 \quad \text { for } \quad z=b, \text { i.e. } y \in \partial \Omega_{e l l} . \tag{4}
\end{equation*}
$$

It is thus clear that u can be estimated as the solution of the above problem in $W_{2}^{(2)}\left(\Omega_{\text {ell }}\right)$.

In the 1st step we will estimate u as a function from $W_{2}^{(1)}\left(\Omega_{\text {ell }}\right)$, i.e. as the so-called weak solution of the problem mentioned above. We multiply Eq. (3) by an arbitrary function v from $W_{2}^{(1)}\left(\Omega_{\text {ell }}\right)$ and integrate this product over $\Omega_{\text {ell }}$. We obtain

$$
\int_{\Omega_{e l l}} v \Delta_{S} u d V=\int_{\Omega_{e l}} v \delta\left(T^{\prime}, h\right) d V
$$

Moreover, the integration by parts (Green's first identity) on the left hand side together with the boundary condition (4) results in

$$
\begin{gather*}
A(v, u)=-\int_{\Omega_{e l l}} v \delta\left(T^{\prime}, h\right) d V, \text { where } \tag{5}\\
A(v, u)=\int_{\Omega_{e l l}}\langle\boldsymbol{g r a d} v, \text { grad } u\rangle d V
\end{gather*}
$$

Similarly, we denote the right hand side of Eq. (5) by $F v$, i.e.

$$
F v=-\int_{\Omega_{e l l}} v \delta\left(T^{\prime}, h\right) d V
$$

Following now the Hölder inequality, we have

$$
\begin{gathered}
|F v| \leq\left(\int_{\Omega_{e l l}} z^{2} \delta^{2}\left(T^{\prime}, h\right) d V\right)^{1 / 2}\left(\int_{\Omega_{e l l}} \frac{1}{z^{2}} v^{2} d V\right)^{1 / 2} \text {, i.e. } \\
|F v| \leq\left\|z \delta\left(T^{\prime}, h\right)\right\|_{L_{2}\left(\Omega_{e l l}\right.}\|v\|_{1}
\end{gathered}
$$

Thus $F v$ is a continuous functional and for its norm the following estimate holds

$$
\|F\| \leq\left\|z \delta\left(T^{\prime}, h\right)\right\|_{L_{2}\left(\Omega_{e l l}\right)} .
$$

To estimate the norm of u we still have to examine whether $A(v, u)$ is a coercive bilinear form. We have to show that

$$
A(v, v) \geq \alpha\|v\|_{1}^{2}, \quad \alpha=\text { const } .>0
$$

is valid for all v from $W_{2}^{(1)}\left(\Omega_{\text {ell }}\right)$. According to (Holota, 1991, 1997) we can put

$$
\alpha=\frac{1}{5} .
$$

Our further considerations are based on the simple Lax-Milgram generalization of the famous Riesz representation theorem.

The assumptions of the Lax-Milgram theorem are met. Indeed, the bilinear form $A(v, u)$ is coercive, as we have shown above. Moreover, it is also continuous, i.e., there exists a constant (const.) such that

$$
|A(v, u)| \leq(\text { const. })\|v\|_{1}\|u\|_{1}
$$

holds for all v and u from $W_{2}^{(1)}\left(\Omega_{\text {ell }}\right)$. A simple proof is left for the reader. Recalling our notation, we have

$$
A(v, u)=F v
$$

in view of Eq. (5) and we can apply the Lax-Milgram theorem immediately. We arrive at

$$
\|u\|_{1} \leq 5\left\|z \delta\left(T^{\prime}, h\right)\right\|_{L_{2}\left(\Omega_{e l l}\right)},
$$

which is our desired estimate.

9. Calderon-Zygmund Inequality

Now we will estimate u as a function from $W_{2}^{(2)}\left(\Omega_{\text {ell }}\right)$, i.e. in the norm

$$
\|u\|_{2}=\left[\|u\|_{1}+\sum_{i=1}^{3} \int_{\Omega_{e l l}}\left|\boldsymbol{\operatorname { g r a d }}\left(\operatorname{grad}_{i} u\right)\right|^{2} d V\right]^{1 / 2} .
$$

As to $\|u\|_{1}$, we can use the result of the preceding section. Hence it remains to estimate the term

$$
D=\sum_{i=1}^{3} \int_{\Omega_{\text {ell }}}\left|\operatorname{grad}\left(\operatorname{grad}_{i} u\right)\right|^{2} d V=\sum_{i=1}^{3} \int_{b<z}\left|\operatorname{grad}\left(\operatorname{grad}_{i} u\right)\right|^{2} d V
$$

Let us approach first $\quad D^{\prime}=\sum_{i=1}^{3} \int_{b<z<b_{e}}\left|\operatorname{grad}\left(\operatorname{grad}_{i} u\right)\right|^{2} d V$
Putting $\quad D_{e}=\sum_{i=1}^{3} \int_{z<b_{e}}\left|\operatorname{grad}\left(\operatorname{grad}_{i} u\right)\right|^{2} d V$, we have $D^{\prime} \leq D_{e}$.

Applying now the Green identity twice, we obtain

$$
\begin{aligned}
D_{e} & =\sum_{i=1}^{3} \int_{z=b_{e}}\left(\operatorname{grad}_{i} u\right) \frac{\partial}{\partial n}\left(\operatorname{grad}_{i} u\right) d S-\sum_{i=1}^{3} \int_{z<b_{e}}\left(\operatorname{grad}_{i} u\right) \Delta_{\text {ell }}\left(\operatorname{grad}_{i} u\right) d V= \\
& =\sum_{i=1}^{3} \int_{z=b_{e}}\left(\operatorname{grad}_{i} u\right) \frac{\partial}{\partial n}\left(\operatorname{grad}_{i} u\right) d S-\int_{z<b_{e}}\left\langle\boldsymbol{g r a d} u, \operatorname{grad}\left(\Delta_{\text {ell }} u\right)\right\rangle d V= \\
& =\sum_{i=1}^{3} \int_{z=b_{e}}\left(\operatorname{grad}_{i} u\right) \frac{\partial}{\partial n}\left(\operatorname{grad}_{i} u\right) d S-\int_{z=b_{e}}\left(\Delta_{\text {ell }} u\right) \frac{\partial u}{\partial n} d S+\int_{z<b_{e}}\left(\Delta_{\text {ell }} u\right)^{2} d V
\end{aligned}
$$

and recalling the integral representation u, Eq. (2), we easily deduce that asymptotically

$$
\operatorname{grad}_{i} u=O\left(z^{-2}\right), \frac{\partial}{\partial n} \operatorname{grad}_{i} u=O\left(z^{-3}\right) \text { and } \delta(T, h)=O\left(z^{-4}\right)
$$

as $z \rightarrow \infty$ (Note. O means the Landau symbol).

Hence $D=D^{\prime} \leq \int_{0<z}\left(\Delta_{S} u\right)^{2} d V$ for $b_{e} \rightarrow \infty$,
which yields the desired estimate

$$
D \leq \int_{\Omega_{e l l}} \delta^{2}(T, h) d V=\|\delta(T, h)\|_{L_{2}\left(\Omega_{e l l}\right)}^{2}
$$

in view of Eq. (3). Combining now

$$
\|u\|_{1} \leq 5\left\|z \delta\left(T^{\prime}, h\right)\right\|_{L_{2}\left(\Omega_{\text {ell }}\right)}
$$

with our last result, we obtain

$$
\|u\|_{2}^{2} \leq 25\left\|z \delta\left(T^{\prime}, h\right)\right\|_{L_{2}\left(\Omega_{e l l}\right)}^{2}+\frac{1}{b^{2}}\left\|z \delta\left(T^{\prime}, h\right)\right\|_{L_{2}\left(\Omega_{e l l}\right)}^{2}
$$

which enables us to write conclusively that

$$
\square\left\|K T^{\prime}\right\|_{2}=\|u\|_{2} \leq\left(25+\frac{1}{b^{2}}\right)^{1 / 2}\left\|z \delta\left(T^{\prime}, h\right)\right\|_{L_{2}\left(\Omega_{\text {ell }}\right)}
$$

10. Contraction Mapping

Recall that our original aim is to prove the contractivity of the operator K. Therefore, in view of

$$
\left\|K T^{\prime}\right\|_{2} \leq\left(25+\frac{1}{b^{2}}\right)^{1 / 2}\left\|z \delta\left(T^{\prime}, h\right)\right\|_{L_{2}\left(\Omega_{\text {ell }}\right)}
$$

it remains to estimate the right hand side by means of $\left\|T^{\prime}\right\|_{2}$, i.e. to get

$$
\left\|z \delta\left(T^{\prime}, h\right)\right\|_{L_{2}\left(\Omega_{\text {ell }}\right)} \leq(\text { const. })\left\|T^{\prime}\right\|_{2}
$$

where
$\delta(T, h)=A_{1} \frac{\partial T}{\partial z}+A_{2} \frac{\partial^{2} T}{\partial z^{2}}+A_{3} \frac{1}{\sqrt{z^{2}+E^{2} \sin ^{2} \beta}} \frac{\partial^{2} T}{\partial z \partial \beta}+A_{4} \frac{w(z+\omega h, \beta)}{\sqrt{z^{2}+E^{2}} \cos \beta} \frac{\partial^{2} T}{\partial z \partial \lambda}$
and $A_{i}, i=1,2,3,4$, are topography dependent coefficients.

In consequence the factor α in

$$
\left\|K T^{\prime}\right\|_{2} \leq \alpha\left\|T^{\prime}\right\|_{2}
$$

depends on essential supreme values

$$
\text { supess }\left|A_{i}\right| \text { of } A_{i}, i=1,2,3,4 \text { in the domain } \Omega_{\text {ell }}
$$

Note. Since α depends on the essential supreme values of A_{i}, $i=1,2,3,4$, we can expect that the contraction nature of K will be kept also for larger slopes, provided that they do not occur too frequently.

The inequality $\alpha<1$ (sufficient for K to be a contraction mapping) has been proved for the topography of a realistic range of heights and relatively gentle slopes.

11. Operator with Reduced Degree of Derivatives

It is convenient to modify the operator K in order to reduce the degree of derivatives involved in $\delta(T, h)$ and to display the mutual interplay of individual terms in $\delta(T, h)$ more explicitly. Integrating by parts, we get

$$
\begin{aligned}
(K T)_{P} & =-\frac{1}{4 \pi} \int_{z=b} N A_{2} \delta g d S-\frac{1}{4 \pi} \int_{b<z<b_{e x t}} N A_{5} \frac{\partial T}{\partial z} d V+ \\
& +\frac{1}{4 \pi} \int_{b<z<b_{e x t}}\left(A_{2} \frac{\partial N}{\partial z}+A_{3} \frac{1}{z} \frac{\partial N}{\partial \beta}+A_{4} \frac{1}{z \cos \beta} \frac{\partial N}{\partial \lambda}\right) \frac{\partial T}{\partial z} d V
\end{aligned}
$$

where

$$
A_{5}=A_{1}-\frac{\partial A_{2}}{\partial z}-\frac{2}{z} A_{2}-\frac{1}{z} \frac{\partial A_{3}}{\partial \beta}+\frac{\sin \beta}{z \cos \beta} A_{3}-\frac{1}{z \cos \beta} \frac{\partial A_{4}}{\partial \lambda}
$$

Note. the quantities with and without the subscript P are referred to the computation and the variable point of the integration.

13. Experiment France - Auvergne

Shuttle Radar Topography Mission

1 arcsec resolution (SRTM1)

Gravity Data δg

Starting Approximation

$$
\left(T_{0}\right)_{P}=\tilde{F}_{P}=\frac{1}{4 \pi} \int_{z=b} N\left(1-A_{2}\right) \delta g d S
$$

Computation of T_{1}

Topography Dependent Coefficients for $\mathbf{z =}=\mathbf{b}$

$$
\begin{gathered}
A_{1}=\frac{1}{b^{2}+E^{2} \sin ^{2} \beta}\left[-2 h-\frac{\sin \beta}{\cos \beta} \frac{\partial h}{\partial \beta}+\frac{\partial^{2} h}{\partial \beta^{2}}+\frac{b^{2}+E^{2} \sin ^{2} \beta}{\left(b^{2}+E^{2}\right) \cos ^{2} \beta} \frac{\partial^{2} h}{\partial \lambda^{2}}\right] \\
A_{2}=-\frac{2 b h+h^{2}}{b^{2}+E^{2} \sin ^{2} \beta}-\frac{1}{b^{2}+E^{2} \sin ^{2} \beta}\left[\left(\frac{\partial h}{\partial \beta}\right)^{2}+\frac{b^{2}+E^{2} \sin ^{2} \beta}{\left(b^{2}+E^{2}\right) \cos ^{2} \beta}\left(\frac{\partial h}{\partial \lambda}\right)^{2}\right] \\
A_{3}=\frac{2}{\sqrt{b^{2}+E^{2} \sin ^{2} \beta}} \frac{\partial h}{\partial \beta}, \quad A_{4}=\frac{2}{\sqrt{b^{2}+E^{2}} \cos \beta} \frac{\partial h}{\partial \lambda}
\end{gathered}
$$

Computation of T_{1}
Topography Dependent Coefficients for France - Auvergne and $\mathbf{z = b}$ (SRTM - 1 arcsec)
$1-A_{2}$

$$
A_{5}=A_{1}-\frac{\partial A_{2}}{\partial z}-\frac{2}{z} A_{2}-\frac{1}{z} \frac{\partial A_{3}}{\partial \beta}+\frac{\sin \beta}{z \cos \beta} A_{3}-\frac{1}{z \cos \beta} \frac{\partial A_{4}}{\partial \lambda}
$$

The approach thus rests: on the solution of the transformed Laplace differential equation for the input gravity disturbances given on the surface of the oblate ellipsoid of revolution.
Green's function representation of the solution and the method of successive approximations are used:

$$
T=\lim _{n} T_{n}, \quad T_{n}=F+K T_{n-1}
$$

where

$$
F(\boldsymbol{y})=\frac{1}{4 \pi} \int_{\partial \Omega_{e l l}} \delta g(\boldsymbol{x}) N(\boldsymbol{x}, \boldsymbol{y}) d_{x} S
$$

is a harmonic function and

$$
K T_{n-1}(\boldsymbol{y})=-\frac{1}{4 \pi} \int_{\Omega_{e l}} \delta\left[T_{n-1}(\boldsymbol{x}) h(\boldsymbol{x})\right] N(\boldsymbol{x}, \boldsymbol{y}) d_{x} V
$$

is an integro-differential operator applied on T_{n-1}.

Thank you for your attention !

Acknowledgements.

The work on this paper was supported by the Ministry of Education, Youth and Sports of the Czech Republic through Project No. LO1506. This support is gratefully acknowledged.

