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1. Introduction 
Green’s functions   are an important tool in solving problems of 
mathematical physics. Equally this holds in gravity field studies. 

● 
Green’s function   is an integral kernel, which, convolved with input 

values, gives the solution of the particular problem considered. 
● 

Regarding its construction,  there exist elegant and powerful 
methods for one or two dimensional problems. 

● 
However, only very few of these methods carried over to higher 

dimensions. The higher the dimension of the Euclidean space the 
simpler the boundary of the region of interest had to be. 

● 
In order to preserve the benefit of the Green’s function method an 

approximation procedure is discussed. Our aim is to implement the 
procedure with the particular focus on the solution of the  

LGBVP (Linear gravimetric boundary value problem) and on  
the related functional analytic aspects. 



P. Holota, O. Nesvadba 

EGU2020-12839 3 
 

2. Linear Gravimetric Boundary-Value Problem 
For this problem the solution domain  Ω   is the exterior of the 
Earth and the problem means to find  T   such that 

0T div T∆ = =grad      in     Ω  , 
 

,T T gδ∂
= = −

∂
s grad

s
     on     Ω∂  , 

where 
1 U
γ

= −s grad  , 

,〈 〉   is the inner product,  ∆   means Laplace’s operator and  Ω∂   
is the boundary of  Ω  . 
 
Note  that  T W U= −   is the disturbing potential and  g gδ γ= −   
the gravity disturbance, where with  W   and  U   we identify the 
gravity and a normal potential of the Earth. 



P. Holota, O. Nesvadba 

EGU2020-12839 4 
 

To be more specific, we recall the classical theory of normal 
gravity referred to a level ellipsoid with semiaxes  a   and  b, 
a b≥   and the linear eccentricity  2 2E a b= − .   
 
● In this case we can introduce ellipsoidal coordinates  , ,u β λ   
related to Cartesian coordinates  1 2 3, ,x x x   by the equations 

2 2
1 cos cosx u E β λ= +  ,  2 2

2 cos sinx u E β λ= +  ,  3 sinx u β=  . 

● In addition we will suppose that a function  ( , )h β λ   describes 
the boundary  Ω∂   of  Ω   with respect to the level ellipsoid  
u b=  ,  i.e.  Ω∂   is represented by 

2 2
1

2 2
2

3

[ ( , ) ] cos cos

[ ( , ) ] cos sin

[ ( , ) ] sin

x b h E

x b h E

x b h

β λ β λ

β λ β λ

β λ β

= + +

= + +

= +

,

,

.
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Now we return to the LGBVP (Linear Gravimetric Boundary-Value 
Problem). We can interpret the boundary condition 

,T T gδ∂
= = −

∂
s grad

s
     on     Ω∂  

in terms of a derivative of  T   with respect to u  ,  i.e. 

( ),T w b h g
u

β δ∂
= − +

∂
   on   Ω∂   , 

where 

( )
2 2 2

2 2
sin, u Ew u

u E
ββ +

=
+

  . 

In solving the LGBVP a transformation of coordinates will be  
applied. 

This will open a way for an alternative between the boundary 
complexity and the complexity of the coefficients of the partial 
differential equation governing the solution.  



P. Holota, O. Nesvadba 

EGU2020-12839 6 
 

3. Transformation of Coordinates and  
an Attenuation Function 

Our starting point will be the mapping as above, i.e. 

2 2
1

2 2
2

3

cos cos

cos sin

sin

x u E

x u E

x u

β λ

β λ

β

= +

= +

=

,

,

,

 

but with 
( ) ( ),u z z hω β λ= +    , 

where  z   is a new coordinate and  ( )zω   is a twice continuously 
differentiable attenuation function defined for  [ ),z b∈ ∞  ,  such 
that 
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( ) ( ),z h bω β λ > −   , 

( ) 1bω =   ,     ( ) 0d b
dz
ω

=  

and 
( ) 0zω =     for    [ ),extz z∈ ∞   ,    where    extb z<   . 

Stress that the assumption concerning the continuity of  ω   and 
its 1st and the 2nd derivatives implies  

( )lim 0zω =  ,   
( )lim 0

d z
d z
ω

=  ,   
( )2

2lim 0
d z

d z
ω

=    for   extz z−→   . 

Note:  , ,z β λ   form a system of new curvilinear coordinates  
and for 

1 0du d h
dz dz

ω
= + >   , 
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the transformation is a one-to-one mapping between  Ω   and the 
outer space  ellΩ   of our oblate ellipsoid of revolution. 

The construction of the attenuation function  ( )zω   in the  
interval  [ ), extb z  ,  i.e. for  extb z z≤ <   ,  deserves some attention. 
Here we give an example (applied in this work).  We put 
 

( ) ( )
( ) ( )

2

2 2

2
exp 2

z
z

z z b

∆
ω

∆

 
= − 

− −  
  ,   where   extz z b∆ = −  , 

i.e. 

( )
( )

( ) ( )

2

2 2
2

2

e
z

z z bz
∆

∆ω

 
− 

− −  =      with    e 2,71828≈  . 

 
The attenuation function and its derivatives are demonstrated on 
the following slide. 
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( )d z
d z
ω ( )2

2

d z
d z
ω

( )zω
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4. Transformation of the Boundary Condition 
In the coordinates  , ,z β λ   the boundary  Ω∂   is defined by  
z b=   and its image  ellΩ∂   coincides with our oblate ellipsoid.  

In addition the transformation changes the formal representation 
of the LGBVP.  Indeed, the boundary condition turns into 

( ) ( ),T w z z h g
z

ω β λ δ∂
 = − + ∂

    for    z b=  . 

Hence, denoting by  n∂ ∂   the derivative in the direction of the 
unit (outer) normal  n  of  ellΩ∂  ,  we obtain 

1T g
n

ε δ∂
= − +

∂
    on    ellΩ∂  , 

where 
2 2 2

2 2 2 2 2 2
(2 )cos

( sin cos ) [( ) ]
E bh h

a b b h E
βε

β β
+

=
+ + +

 

may practically be neglected. 
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5. Laplacian and Topography-Dependent  
Coefficients 

It is somewhat more complicated to express Laplace’s operator 
of  T   in terms of the coordinates  , ,z β λ  , which do not form an  
orthogonal system. We will use the tensor calculus. Recalling 

2 2
1

2 2
2

3

[ ( ) ( , ) ] cos cos

[ ( ) ( , ) ] cos sin

[ ( ) ( , ) ] sin

x z z h E

x z z h E

x z z h

ω β λ β λ

ω β λ β λ

ω β λ β

= + +

= + +

= +

,

, 

and putting  1y z=  ,  2y β=  ,  3y λ=  ,  we easily deduce that the 
Jacobian  

( )2 2 21 sin cos 0i

j

x dJ h z h E
y dz

ω ω β β∂    = = − + + + <   ∂  
 , 

apart from its zero values for / 2β π= −  and / 2π . Thus, the 
transformation is a one-to-one mapping. 
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Moreover, for Laplace’s operator  ∆   applied on  T   we generally 
have 

21 1 ij
ij ij

i j i j i j

g gT T TT g g g
y y y y y yg g

∆
  ∂∂ ∂ ∂ ∂

= = +  ∂ ∂ ∂ ∂ ∂ ∂ 
  . 

Here  2
ijg g J= =   is the determinant related to the respective 

metric tensor  ijg   and  ijg   means the associated metric tensor.  
 
After some algebra and neglecting the difference  

( ) ( )
22

2 2 2
2, , 2 cosE h hw z h w z

z zz
ω β β ω ω β

  + − ≤ +  
   

  , 

we can deduce 

( )
2 2 2

2 2 2
sin ,

( ) sin ell
z ET T T h

z h E
β∆ ∆ δ

ω β
+  = − + +

  , 
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where 

( )
2 2 2 2 2 2

2 2
2 2 2 2 2 2 2 2 2

1 sin sin2
cossin ( )cosell

T T T T z E TT z E z
zz E z z E

β β∆
β ββ β β λ

 ∂ ∂ ∂ ∂ + ∂
= + + + − + ∂ ∂+ ∂ ∂ + ∂ 

 , 

 

( ) ( )2 2 2

1 2 3 42 2 2 2 2 2

,1,
sin cos

w z hT T T TT h A A A A
z z zz z E z E

ω β
δ

β λβ β

+∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂∂ + +
 

and  iA   are topography dependent coefficients given by 
 

1

1 2 2 2

2 3 2 2 2
2 22

2 2 2 2

1 2
sin

( )2 1 1
sin

E

E E

d d zhA h h
dz dz z z E

d d d z h E dh h h h h
dz dz dz z E dz

ω ω ω ω∆
β

ω ω ω ω ωω ω
β

−

− −

    = + − + −     +    

 + +   − + + + +     +     
grad grad ,
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2 2 2 2 2
2

2 2 2 2 2 2 2 2

2
22

1 2
sin

1 E

d d z d z EA h h h
dz dz dzz E z E z E

d h h
dz

ω ω ω ω ω
β

ω ω

−

−

    +    = + − + − −      + + +        

 − + 
 

grad ,

 

 
1

3 2 2 2

21
sin

d hA h
dz z E

ω ω
ββ

− ∂ = +  ∂  +
 ,   ( )1

4 2 2

2 ,
1

cos

w z hd hA h
dz z E

ω ω βω
λβ

− + ∂ = +  ∂  +
 

with 
2 22 2 2

2
2 2 2 2 2 2

1 sin
sin ( )cosE

h z E hh
z E z E

β
β λβ β

  ∂ + ∂ = +   ∂ ∂+ +     
grad  

and 
2 2 2 2 2

2 2 2 2 2 2 2 2
1 sin sin

cossin ( )cosE
h h z E hh

z E z E
β β∆
β ββ β β λ

 ∂ ∂ + ∂
= − + ∂+ ∂ + ∂ 

 

being the 1st and the 2nd Beltrami differential operators. 
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6. Linear GBVP and Neumann’s Function 
The disturbing potential  T   is a harmonic function in the original 
solution domain  Ω .  In the space of the curvilinear coordinates  

, ,z β λ ,  therefore,  T   satisfies Laplace’s equation  0T∆ =   for  
z b>  .  This yields 

( ),ellT T h∆ δ=      for     z b>   , 
where 

( ) ( )2 2 2

1 2 3 42 2 2 2 2 2

,1,
sin cos

w z hT T T TT h A A A A
z z zz z E z E

ω β
δ

β λβ β

+∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂∂ + +
 . 

Hence the linear gravimetric boundary value problem attains the 
form 

ellT f∆ =      in     ellΩ   , 

1T g
n

ε δ∂
= − +

∂
     on     ellΩ∂   , 

where  ( , )f T hδ=   and  ε   may be omitted.  
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Neglecting the fact that  ( , )f T hδ=   depends on  T  ,  we can 
represent the solution of the problem formally by means of a 
classical apparatus of mathematical physics.  
Indeed, we may construct the respective Green’s function of the 
second kind  ( , )N x y  ,  which solves Neumann’s boundary value 
problem for the domain  ellΩ  .  Then (formally) 

( ) ( ) ( ) ( ) ( )1 1, ,
4 4

ell ell

x xT g N d S f N d V
Ω Ω

δ
π π∂

= −∫ ∫y x x y x x y   . 

 
7. Iteration Process 

Nevertheless, Neumann’s function  ( , )N x y   can also be used to 
solve the transformed LGBVP , where  ( , )f T hδ=   depends on 
T  . In this case the integral formula above represents an integro-
differential equation for  T  .  
 
For clarity we can put 
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( ) ( ) ( )1 ,
4

ell

xF g N d S
Ω

δ
π ∂

= ∫y x x y   

( ) [ ] ( )1 ( ), ( ) ,
4

ell

xK T T h N d V
Ω

δ
π

= − ∫y x x x y , 

where  ( )F y   is a harmonic function and  ( )KT y   is an integro-
differential operator applied on  T  , such that 

( ),ell K T T h∆ δ=    in   ellΩ      and      0K T
n

∂
=

∂
   on   ellΩ∂  . 

Under this notation the problem is to find  T   from 
T F K T= +  . 

We apply the method of successive approximations, i.e. 

lim nn
T T=   ,     1n nT F K T −= +   , 

where  0T   is the starting approximation, e.g.  0T F=  . 
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8. Function Spaces and Estimates of a Particular 
Solution of Poisson’s Equation 

Our aim is to examine whether the iteration process converges. 
The investigation will be based on Banach’s fixed point theorem 
interpreted for functions from a Sobolev weight space.  
Let  (1)

2 ( )ellW Ω   be a Sobolev weight space equipped by the norm 
1/2

22
21

1

ell ell

u u dV u dV
zΩ Ω

 
 = +
  
∫ ∫ grad , 

Similarly, let  (2)
2 ( )ellW Ω  be a Sobolev weight space with the 

norm 

                 ( )
1/2

3 2

2 1
1

ell

i
i

u u grad u dV
Ω=

 
 = +
  

∑ ∫ grad . (1) 

It is obvious that   (2) (1)
2 2( ) ( )ell ellW WΩ Ω⊂  .  



P. Holota, O. Nesvadba 

EGU2020-12839 19 
 

The crucial point for the use of Banach’s theorem is to show that 
the operator  K   is a contraction mapping. In our case it means 
to show that there is a constant  1α <   such that the inequality 

2 2Ku Kv u vα− ≤ −  

holds for arbitrary functions  u   and  v   from  (2)
2 ( )ellW Ω ,  provid-

ed that also F  belongs to (2)
2 ( )ellW Ω . Considering the linearity of 

the operator  K  ,  we can see that it is enough to show that 

2 2KT Tα′ ′≤  

with  1α <   holds for any  T ′  from  (2)
2 ( )ellW Ω  ,  still provided 

that F   belongs to  (2)
2 ( )ellW Ω  . 
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Recall that in our investigation we particularly have 

           ( ) ( ) [ ] ( )1 ( ), ( ) ,
4

ell

xu KT T h N d V
Ω

δ
π

′ ′= = − ∫y y x x x y  (2) 

We will study first how the estimate  u   by means of  δ  . 
 
From the fundamental properties of Neumann’s function it can 
be deduced that  u   is a solution of the following boundary-value 
problem 
 
                    ( ),ellu T h∆ δ ′=      for     z b> ,  i.e.  ellΩ∈y  (3) 
and 

                                   0u
n
∂

=
∂

     for     z b=  ,  i.e.  ellΩ∈∂y  . (4) 

 
It is thus clear that  u   can be estimated as the solution of the 
above problem in  (2)

2 ( )ellW Ω  . 
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In the 1st step we will estimate  u   as a function from  (1)
2 ( )ellW Ω  , 

i.e. as the so-called weak solution of the problem mentioned 
above. We multiply Eq. (3) by an arbitrary function  v   from  

(1)
2 ( )ellW Ω   and integrate this product over  ellΩ  . We obtain 

( ),
ell ell

Sv u dV v T h dV
Ω Ω

∆ δ ′=∫ ∫  . 

Moreover, the integration by parts (Green’s first identity) on the 
left hand side together with the boundary condition (4) results in 

                         ( )( , ) ,
ell

A v u v T h dV
Ω

δ ′= − ∫  ,   where (5) 

 
( , ) ,

ell

A v u v u dV
Ω

= ∫ grad grad  

Similarly, we denote the right hand side of Eq. (5) by  Fv  , i.e. 

( ),
ell

Fv v T h dV
Ω

δ ′= − ∫  . 
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Following now the Hölder inequality, we have 

( )
1/2 1/2

2 2 2
2

1,
ell ell

Fv z T h dV v dV
zΩ Ω

δ
   

′   ≤
   
   
∫ ∫ , i.e. 

( )
2 1( )

,
ellL

Fv z T h v
Ω

δ ′≤  

Thus Fv  is a continuous functional and for its norm the follow-
ing estimate holds 

( )
2 ( )

,
ellL

F z T h
Ω

δ ′≤  . 

To estimate the norm of u  we still have to examine whether 
( , )A v u   is a coercive bilinear form. We have to show that 

2
1( , )A v v vα≥   ,     . 0constα = >  , 

is valid for all v  from (1)
2 ( )ellW Ω  . According to (Holota, 1991, 

1997) we can put 
1
5

α =  . 
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Our further considerations are based on the simple Lax-Milgram 
generalization of the famous Riesz representation theorem.  
 
The assumptions of the Lax-Milgram theorem are met. Indeed, 
the bilinear form  ( , )A v u   is coercive, as we have shown above. 
Moreover, it is also continuous, i.e., there exists a constant  
( .)const   such that  

1 1( , ) ( .)A v u const v u≤  

holds for all  v   and  u   from  (1)
2 ( )ellW Ω  . A simple proof is left for 

the reader. Recalling our notation, we have 
( , )A v u Fv=  

in view of Eq. (5) and we can apply the Lax-Milgram theorem  
immediately. We arrive at 

( )
21 ( )

5 ,
ellL

u z T h
Ω

δ ′≤  , 

which is our desired estimate. 
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9. Calderon-Zygmund Inequality 
Now we will estimate  u   as a function from  (2)

2 ( )ellW Ω  , i.e. in 
the norm 

( )
1/2

3 2

2 1
1

ell

i
i

u u grad u dV
Ω=

 
 = +
  

∑ ∫ grad . 

As to  1u  , we can use the result of the preceding section. 
Hence it remains to estimate the term 

( ) ( )
3 32 2

1 1
ell

i i
i i b z

D grad u dV grad u dV
Ω= = <

= =∑ ∑∫ ∫grad grad  . 

Let us approach first   ( )
3 2

1
e

i
i b z b

D grad u dV
= < <

′ = ∑ ∫ grad  

Putting   ( )
3 2

1
e

e i
i z b

D grad u dV
= <

= ∑ ∫ grad  ,   we have   eD D′ ≤  . 
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Applying now the Green identity twice, we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

3 3

1 1

3

1

3 2

1

,

e e

e e

e e e

e i i i ell i
i iz b z b

i i ell
i z b z b

i i ell ell
i z b z b z b

D grad u grad u dS grad u grad u dV
n

grad u grad u dS u u dV
n

ugrad u grad u dS u dS u dV
n n

∆

∆

∆ ∆

= == <

= = <

= = = <

∂
= − =

∂

∂
= − =

∂

∂ ∂
= − +

∂ ∂

∑ ∑∫ ∫

∑ ∫ ∫

∑ ∫ ∫ ∫

grad grad  

and recalling the integral representation  u  , Eq. (2), we easily 
deduce that asymptotically 

( )2
igrad u zΟ −=  ,   ( )3

igrad u z
n

Ο −∂
=

∂
   and   ( ) ( )4,T h zδ Ο −=  

as z →∞ (Note. O  means the Landau symbol).  
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Hence   ( )2

0
S

z

D D u dV∆
<

′= ≤ ∫    for   eb →∞ ,  

which yields the desired estimate 

( ) ( )
2

22
( )

, ,
ell

ell

L
D T h dV T h

Ω
Ω

δ δ≤ =∫  

in view of Eq. (3). Combining now  

( )
21 ( )

5 ,
ellL

u z T h
Ω

δ ′≤  

with our last result, we obtain 

( ) ( )
2 2

2 22
22 ( ) ( )

125 , ,
ell ellL L

u z T h z T h
bΩ Ω

δ δ′ ′≤ +  , 

which enables us to write conclusively that 

( )
2

1/2

22 2 ( )

125 ,
ellL

KT u z T h
b Ω

δ ′ ′= ≤ + 
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10. Contraction Mapping 
Recall that our original aim is to prove the contractivity of the 
operator  K  . Therefore, in view of  

( )
2

1/2

22 ( )

125 ,
ellL

KT z T h
b Ω

δ ′ ′≤ + 
 

 

it remains to estimate the right hand side by means of  2T ′  , 
i.e. to get 

( )
2 2( )

, ( .)
ellL

z T h const T
Ω

δ ′ ′≤   , 

where 

( ) ( )2 2 2

1 2 3 42 2 2 2 2 2

,1,
sin cos

w z hT T T TT h A A A A
z z zz z E z E

ω β
δ

β λβ β

+∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂∂ + +
 

and  iA  ,  1, 2, 3, 4i =  , are topography dependent coefficients.  
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In consequence the factor  α   in  

2 2KT Tα′ ′≤  

depends on essential supreme values   

supess | |iA    of   iA  ,  1, 2, 3, 4i =   in the domain  ellΩ   
 
Note. Since α  depends on the essential supreme values of  iA  ,  

1, 2, 3, 4i =  , we can expect that the contraction nature of  K   will 
be kept also for larger slopes, provided that they do not occur 
too frequently. 
 
The inequality  1α <   (sufficient for  K   to be a contraction map-
ping) has been proved for the topography of a realistic range of 
heights and relatively gentle slopes.  
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11. Operator with Reduced Degree of Derivatives 
It is convenient to modify the operator  K   in order to reduce the 
degree of derivatives involved in  ( , )T hδ   and to display the  
mutual interplay of individual terms in  ( , )T hδ   more explicitly.  
Integrating by parts, we get 

( ) 2 5

2 3 4

1 1
4 4

1 1 1
4 cos

ext

ext

P
z b b z b

b z b

TK T NA g dS NA dV
z

N N N TA A A dV
z z z z

δ
π π

π β β λ

= < <

< <

∂
= − − +

∂

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

∫ ∫

∫   ,
 

where 
2 3 4

5 1 2 3
2 1 sin 1

cos cos
A A A

A A A A
z z z z z

β
β β β λ

∂ ∂ ∂
= − − − + −

∂ ∂ ∂
  . 

Note. the quantities with and without the subscript P are referred 
to the computation and the variable point of the integration. 
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13. Experiment France - Auvergne 
Shuttle Radar Topography Mission                 Gravity Data gδ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                   [ ]mGal  
1 arcsec  resolution (SRTM1) 
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Starting Approximation 
 

( ) ( )0 2
1 1

4PP
z b

T F N A g dSδ
π =

= = −∫  

     0h m=             10 000h m=         25 000h m=         50 000h m=  
 
 
 
 
 
 
 
 

2 2m s−    
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Computation of  1T   
 

Topography Dependent Coefficients  for  z = b 
 
 

2 2 2 2 2

1 2 2 2 2 2 2 2 2
1 sin sin2

cossin ( )cos
h h b E hA h

b E b E
β β
β ββ β β λ

 ∂ ∂ + ∂
= − − + + ∂+ ∂ + ∂ 

 

2 22 2 2 2

2 2 2 2 2 2 2 2 2 2
2 1 sin

sin sin ( )cos
bh h h b E hA

b E b E b E
β

β λβ β β

  + ∂ + ∂ = − − +   ∂ ∂+ + +     
 

3 2 2 2

2

sin

hA
b E ββ

∂
=

∂+
   ,      4 2 2

2

cos

hA
b E λβ

∂
=

∂+
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Computation of  1T  
 

Topography Dependent Coefficients 
for  France - Auvergne  and  z = b  (SRTM - 1 arcsec) 

 
      21 A−                        3A                            4A                          5A  
 
 
 
 
 
 
 
 
 
 

2 3 4
5 1 2 3

2 1 sin 1
cos cos

A A A
A A A A

z z z z z
β

β β β λ
∂ ∂ ∂

= − − − + −
∂ ∂ ∂
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The approach thus rests: on the solution of the transformed  
Laplace differential equation for the input gravity disturbances 
given on the surface of the oblate ellipsoid of revolution.  
Green’s function representation of the solution and the method 
of successive approximations are used: 

lim nn
T T=   ,    1n nT F KT −= +  

where 
1( ) ( ) ( , )

4
ell

xF g N d S
Ω

δ
π ∂

= ∫y x x y  

is a harmonic function and 

[ ]1 1
1( ) ( ) ( ) ( , )

4
ell

n n xKT T h N d V
Ω

δ
π− −= − ∫y x x x y  

is an integro-differential operator  applied  on  1nT −  . 
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TThhaannkk  yyoouu  ffoorr  yyoouurr  aatttteennttiioonn  !! 
 
AAAccckkknnnooowwwllleeedddgggeeemmmeeennntttsss...      
TTThhheee   wwwooorrrkkk   ooonnn   ttthhhiiisss   pppaaapppeeerrr   wwwaaasss   sssuuuppppppooorrrttteeeddd   bbbyyy   
ttthhheee   MMMiiinnniiissstttrrryyy   ooofff   EEEddduuucccaaatttiiiooonnn,,,   YYYooouuuttthhh   aaannnddd   SSSpppooorrrtttsss   
ooofff   ttthhheee   CCCzzzeeeccchhh   RRReeepppuuubbbllliiiccc   ttthhhrrrooouuuggghhh   PPPrrrooojjjeeecccttt      
NNNooo...   LLLOOO111555000666...   TTThhhiiisss   sssuuuppppppooorrrttt   iiisss   gggrrraaattteeefffuuullllllyyy   
aaaccckkknnnooowwwllleeedddgggeeeddd...   
 
 
 
 
 
 
 
 
 


