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1. Introduction

Green’s functions are an important tool in solving problems of
mathematical physics. Equally this holds in gravity field studies.
o
Green’s function is an integral kernel, which, convolved with input
values, gives the solution of the particular problem considered.

[

Regarding its construction, there exist elegant and powerful
methods for one or two dimensional problems.

[

However, only very few of these methods carried over to higher
dimensions. The higher the dimension of the Euclidean space the
simpler the boundary of the region of interest had to be.

[

In order to preserve the benefit of the Green’s function method an
approximation procedure is discussed. Our aim is to implement the
procedure with the particular focus on the solution of the
LGBVP (Linear gravimetric boundary value problem) and on
the related functional analytic aspects.
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2. Linear Gravimetric Boundary-Value Problem

For this problem the solution domain (2 is the exterior of the
Earth and the problem means to find 7 such that

AT =divgradT =0 in (2,

a—T:<s,gde>:—5g on 012,

oS

where

s=—lgmdU,

/4
(,) is the inner product, A means Laplace’s operator and 02

is the boundary of (2.

Note that 7'=WW —U is the disturbing potential and 6g =g —y
the gravity disturbance, where with 7 and U we identify the

gravity and a normal potential of the Earth.
EGU2020-12839
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To be more specific, we recall the classical theory of normal

gravity referred to a level ellipsoid vy'lh_sgmiaxes a and b,
a>b and the linear eccentricity E =+ a” —b*

e In this case we can introduce ellipsoidal coordinates u, 3, A
related to Cartesian coordinates Xx,, x,, x; by the equations

X, :\/u2+ E* cosfcosd , X, =\/u2+ E? cosfsind , X; =using .

¢ In addition we will suppose that a function h([,A) describes
the boundary 0¢2 of (2 with respect to the level ellipsoid
u=>b, i.e. 002 is represented by

x, =+ [b+h(B,A)]* +E* cosp cosd
x, =+ [b+h(B, )] + E* cosB sind
v = [b+h(B,A)]sing .
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Now we return to the LGBVP (Linear Gravimetric Boundary-Value
Problem). We can interpret the boundary condition

a—T:<s,gde>:—5g on 0X
oS
in terrds of a derivative of 7' with respectto u , i.e.
T
2—=—w(b+h,ﬂ)5g on 012 ,
U

where

2 | 2 2
u-+E“sin“f
W(”’ﬂ):\/ 2R

In solving the LGBVP a transformation of coordinates will be
applied.

This will open a way for an alternative between the boundary
complexity and the complexity of the coefficients of the partial
differential equation governing the solution.
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3. Transformation of Coordinates and
an Attenuation Function

Our starting point will be the mapping as above, i.e.

X :\/u2+E2 cosff cosA

X, =\/u2+E2 cosf sind

X; = usmpg ,

> u=z+o(z)h(B.4)

where z is a new coordinate and @(z) is a twice continuously

but with

differentiable attenuation function defined for z < [ b, ) , such
that
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o(2)h(B,A) > b |
o(b)=1, é_f(b):o
and

a)(z)zo for ze[zext,oo), where b <z, .

Stress that the assumption concerning the continuity of @ and
its 1st and the 2nd derivatives implies

, , da)(z) , dza)(z) B
limw(z)=0, lim =0, lm ~—=0 for z—> 2z, .
dz dz
Note: z, [, A form a system of new curvilinear coordinates
and for g p
u 0,
—=1+—h>0,
dz dz
EGU2020-12839 7
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the transformation is a one-to-one mapping between (2 and the
outer space (2, of our oblate ellipsoid of revolution.

The construction of the attenuation function a)(z) in the
interval [b z ), l.e.for b<z<:z deserves some attention.

> Text

Here we give an example (applied in this work). We put

ext

a)(z) =exp| 2 —

, Where Az=z, —-b,

i.e.

e
a)(z):e[ (2] =00 ] ith e~2,71828 .

The attenuation function and its derivatives are demonstrated on
the following slide.
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Attenuation Function
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4. Transformation of the Boundary Condition

In the coordinates z, 5, A the boundary 0(2 is defined by
z=>b andits image 0(2,, coincides with our oblate ellipsoid.

In addition the transformation changes the formal representation
of the LGBVP. Indeed, the boundary condition turns into

oT

—=-w|z+w(z)h(B,A)|6g for z=b.

Oz

Hence, denoting by 8/ on the derivative in the direction of the

unit (outer) normal n of 0(2,,, we obtain

8—T:—\/1+g og on 0L, ,

on
where

- E*(2bh+h*)cos*
(@®sin?B+b*cos’B)[(b+h)* + E*]

may practically be neglected.
EGU2020-12839 10
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5. Laplacian and Topography-Dependent
Coefficients
It is somewhat more complicated to express Laplace’s operator
of 7' in terms of the coordinates z, 5, A , which do not form an
orthogonal system. We will use the tensor calculus. Recalling

x, =+ [z+@(2)h(B, )] + E* cosfB cosi

x, =+ [z+@(2)h(B,A)]* + E> cosB sind

x,= [z+o(z)h(B,2)]sing
and putting y, =z, y,=0, y;=4, we easily deduce that the

Jacobian
J = o, :_(1+d_whj[(z+a)h)2+E28in2,8] cosfB < 0,
oy, dz

apart from its zero values for f=—7/2 and n /2. Thus, the

transformation is a one-to-one mapping.
EGU2020-12839 11
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Moreover, for Laplace’s operator A applied on 7 we generally

have
1 0 20T ), T 1 dJgg’ or
AT = g8’ —|=¢ +
Jg o, ;) " vy, Jg v oy,
Here g = ‘ 8= J? is the determinant related to the respective

metric tensor g, and 2’ means the associated metric tensor.

After some algebra and neglecting the difference

wz(era)h,,B)—wz(z,ﬂ)gE—22 2(0ﬁ+(a)ﬁj cos’f ,

z Z z

we can deduce

z°+ E*sin*f3
AT = e [AellT—ﬁ(T,h)] ,
(z+wh)™+ E°sin” [
12
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where
1 , o\ O°T or | 0°T sinf or | 2+ E*sin®f 0°T
5 (Z + E )—+22 5 5 5
z'+ E-sin” oz Oz 8ﬂ cos [ 8ﬂ (z°+ E*)cos” 5 0
2 2 + h, 2
4L 49Ty 1 T , wizrohp) T

0z 0z’ \/22 + E%sin’ g 0200 ! Jz2 + E? cos g 0204

and A4; are topography dependent coefficients given by

(1+d—whj 2(‘[”—”) 2 +a)AEh}—
dz

dz z)z+E’sin’f
-2 -3 2 2 2
—2( dwhj a)—|grad h| + 1+d—a)hj (22+a)};).+2E +co2|gdeh|2 d—?h,
d dz z°+ Esin” dz
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) 2 2 2 2
Dl b [ s
dz dz z°+E dz z7+ E z°+ Esin”

dz
do Y 2w oh do ) 20w(z+ohf) oh
1+—h , l+—nh
dz \/22+E2sin2,8 op dz Jz°+E* cos B oA
with ) _
2 I onY P+ E*sin’g (on Y
|gdeh| T2, 2.2 Tt 2
z+E“sin“ |\ 0B ) (z°+E")cos" B\ 0OA
and
1 0°h sinf 6h  z*+E*sin°fB 0°h
Ah=——7"7 2 t 2 2
z+ E“sin“ 8| 0B° cosfB Of (z°+E“)cos S OA

being the 1st and the 2nd Beltrami differential operators.
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6. Linear GBVP and Neumann’s Function

The disturbing potential 7 is a harmonic function in the original
solution domain (2. In the space of the curvilinear coordinates
z, B, A, therefore, T satisfies Laplace’s equation A7 =0 for
z >b . This yields

Ae”T=5(T,h) for z>b ,
where

2 2 + wh, 2
5(T,h):Ala—T+Aza—7;+A3 1 0T A, w(z+wh,f) 6T .
0z Oz \/z2 + E*sin® g 020p Jz* + E* cos g 0204

Henge the linear gravimetric boundary value problem attains the

form
A, T=f in 0,

a—T:—«/1+55g on 0f£2, ,

on

where f =0(T, h

may be o

EGU2020-12839
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Neglecting the fact that f =0(7, /%) depends on T , we can
represent the solution of the problem formally by means of a
classical apparatus of mathematical physics.

Indeed, we may construct the respective Green’s function of the
second kind N(x,y), which solves Neumann’s boundary value
problem for the domain (2, . Then (formally)

T(3)=o- [ Se(x)N(x.2)d, S [ F(x)N(x0)dV

a‘(2ell

7. Iteration Process

Nevertheless, Neumann’s function N(x,y) can also be used to
solve the transformed LGBVP , where f =0(1,h) depends on

T . In this case the integral formula above represents an integro-
differential equation for 1 .

For clarity we can put

EGU2020-12839 16
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2y

F(y) Ar

I5g( ) (x,y)de

aQ ell

KT(y) = —i I o) [T(x),h(x)]N(x,y) dlv,

where F'(y) is a harmonic function and KT (y) is an integro-
differential operator applied on T , such that

oK T
A KT=6(T,h) in 2, and P 0 on 00,
n
Under this notation the problem is to find 7 from
I'=F+ KT .
We apply the method of 1 imations, i.e.

where 7, is the starting approximation, e.g. 7, = F'.
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8. Function Spaces and Estimates of a Particular
Solution of Poisson’s Equation

Our aim is to examine whether the iteration process converges.
The investigation will be based on Banach’s fixed point theorem
interpreted for functions from a Sobolev weight space.

Let W)(£2,,) be a Sobolev weight space equipped by the norm
- 1172

H”H1: j%udeJr“gmdu‘de :
z

Qll Qll

e

Similarly, let #,”(£2,) be a Sobolev weight space with the

norm _ 11/2

3
Jull, = |Ju],+> [ |grad(gradu)[av| . ()

i=1 ‘Qell

It is obvious that W,2(Q2,,)cW\(Q,,) .

EGU2020-12839 18

(©MCcl




P. Holota, O. Nesvadba <EGU§§?§$%'W 2020

The crucial point for the use of Banach’s theorem is to show that
the operator K is a contraction mapping. In our case it means
to show that there is a constant « <1 such that the inequality

| Ku—Kv|, <a]u-v],

holds for arbitrary functions u# and v from Wz(z)(_Qé”), provid-
ed that also F' belongs to Wz(z)(_Qe”). Considering the linearity of
the operator K , we can see that it is enough to show that

> | KT

with a <1 holds for any T’ from W.?(Q ), still provided
that I belongs to 7.7(2,).

<a|T

2
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Recall that in our investigation we particularly have
4 1 4
u(y)=KT (y)z—E j S[T'(x),h(x)|N(x,p)dV (2)
Qell

We will study first how the estimate u by means of o .

From the fundamental properties of Neumann’s function it can
be deduced that u is a solution of the following boundary-value
problem

Au=38(T",h) for z>b,ie ye, (3)
and
8—u=0 for z=b,ie yeo2, . (4)
on

It is thus clear that u# can be estimated as the solution of the

above problem in W, (2, .

EGU2020-12839 20
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In the 1st step we will estimate u« as a function from Wz(l)(Qe”) :

i.e. as the so-called weak solution of the problem mentioned
above. We multiply Eq. (3) by an arbitrary function v from
wi(£2,) and integrate this product over (2 , . We obtain

| vaguay = [ vo(T',h)dv .

‘Qll ‘Qell

e

Moreover, the integration by parts (Green’s first identity) on the
left hand side together with the boundary condition (4) results in

A(v,u) =— I v5(T’,h)dV , where (5)
‘Qell
A(v,u) = J <gradv,gradu>dV
Qell

Similarly, we denote the right hand side of Eq. (5) by FV, i.e.
Fv=— [ vo(T",h)av .
Qell

EGU2020-12839 21
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Following now the Holder inequality, we have
1/2 1/2

o < | [ 283 (T h)av | | | izvz dv | ,ie.
Qell Qell

Fv| < Hzé(T',h)HL2(Qeﬂ)H

Thus Fv is a continuous functional and for its norm the follow-
ing estimate holds

!

| F| < Hz5 (T",1) .

To estimate the norm of u we still have to examine whether
A(v,u) is a coercive bilinear form. We have to show that

A(v,v)ZaHsz a = const. > 0,

is valid for all v from W,(£Q, ) . According to (Holota, 1991,
1997) we can put

EGU2020-12839 22
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Our further considerations are based on the simple Lax-Milgram
generalization of the famous Riesz representation theorem.

The assumptions of the Lax-Milgram theorem are met. Indeed,
the bilinear form A(v,u) is coercive, as we have shown above.

Moreover, it is also continuous, i.e., there exists a constant
(const.) such that

‘ A(v,u) ‘ < (const.) H V Hl H u H1

holds forall v and u from W."(£2 ) . A simple proof is left for
the reader. Recalling our notation, we have

A(v,u)=Fv

in view of Eqg. (5) and we can apply the Lax-Milgram theorem
immediately. We arrive at

|ul, < 5|z8(T",h)

LZ(‘Qell) ,
which is our desired estimate.

EGU2020-12839 23
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9. Calderon-Zygmund Inequality

Now we will estimate u as a function from W,2(Q2, ) , i.e. in
the norm - q1/2

3 2
Hu”z = H“H1+Z; j ‘grad(gmdiu)‘ dVv
=10,

As to Hu H1 : we_can use the result of the precec_iing section.
Hence it remains to estimate the term

D:i I ‘gmd(gradl.u)‘dezi I ‘gmd(gmdiu)‘de.

i=l g, i=lp<z

3
Let us approach first D' = Z j ‘ gmd(gmdiu) ‘2 dVv
=1

1=lp<z<b,

3
Putting D, = Z j ‘gmd(gmdiu) ‘2 dV , wehave D'<D,.

i=1 z<b,

EGU2020-12839 24
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Applying now the Green identity twice, we obtain

= j gradu gmdu)dS Zj gmdu) e,,(gmdu)dV

z=ph = 1Z<b

23: j graa’u gradu dS j <gmdu grad(Aeﬂu)>dV
i=1,

=) z<b,

3
:;Zjb (gmdl.u)%(gmdiu)ds - J. (Ae”u)gu ds + J- ( ellu) av

z=b, z<b,

and recalling the integral representation u , Eq. (2), we easily
deduce that asymptotically

grad.u = 0(2_2) , %gmdl.u = 0(2_3) and &(T,h)= 0(2_4)

as z — o (Note. O means the Landau symbol).

EGU2020-12839 25
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2
Hence D=D'"< I (ASu) dV for b, > 0,
O<z
which yields the desired estimate

D < | 8T, h)av =
Qll
in view of Eq. (3). Combining now

|ul, <5|z8(T",h)

Ly (£2,)

LZ(Qell)
with our last result, we obtain

|ul} <25|z6(r"m), )+l 8(T" 1)

L(2,) P2

L2 (Qell) ,

which enables us to write conclusively that

1/2
) kTl =l s (25425 ] Ja(r)

EGU2020-12839 26
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10. Contraction Mapping

Recall that our original aim is to prove the contractivity of the
operator K . Therefore, in view of

1/2
(257) l-s(rn),

it remains to estimate the W
I.e. to get

HZ&(T',h) < (const.) H T’ H2 :

L2 (‘Qell )
where

2 2 + h, 2
Ala—T+A26—T+A : 8T+A wiz+ohp) o1

0z ozF \/z2 + E%sin? g 0200 ! Jz* + E* cos g 0204
and 4., i=1,2,3,4, are topography dependent coefficients.
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In consequence the factor « in

k'], <alT

2

depends on essential supreme values

supess | A | of A4, i=1,2,3,4 inthe domain (2

Note. Since @ depends on the essential supreme values of A,
i=1,2,3,4 , we can expect that the contraction nature of K will
be kept also for larger slopes, provided that they do not occur
too frequently.

The inequality o <1 (sufficient for K to be a contraction map-
ping) has been proved for the topography of a realistic range of
heights and relatively gentle slopes.
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11. Operator with Reduced Degree of Derivatives

It is convenient to modify the operator K in order to reduce the
degree of derivatives involved in O(1,h) and to display the

mutual interplay of individual terms in O0(7,%2) more explicitly.
Integrating by parts, we get

(KT)P:—— j NA, 5g dS — | N4 Ty s

4r b<z<h Oz

+L J' A28N Al@_N A, 1 ON aTdV,
T 0z Z@,b’ zcosf OA ) Oz

b<z<b,,
where
0A 04, 0A
ASZAI——z—%Az 1 Sln,B 1 4
0z z z Of zcos,B zcos,B oA

Note. the quantities with and without the subscript P are referred
to the computation and the variable point of the integration.
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13. Experiment France - Auvergne
Shuttle Radar Topography Mission Gravity Data o g
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500 m

Om

1 arcsec resolution (SRTM1)

-40 -30 -20 -10 0 10 20 30 40
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Starting Approximation
~ |
(T), = Fr= - N(1-4,)5gds
T z=b

h=10000 m h=25000m h=350000 m

_14
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Computation of 1

Topography Dependent Coefficients for z=b

ener

o I L, _SinBoh Oh b+ E’sin’p O*h
L b+ Ersin’g | cos 3 aﬂ 03 (b2+E )cos® § A% |
oo 2bhn 1 onY, b+ Esin’p ( jz
P4+ EZsin’B b+ E*sin’B |\ 08 (b2+E A
4= 2 oh 4 = 2 oh
\/b2+ E?sin*p op \/b2+ E? cos B 04
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Computation of 1

Topography Dependent Coefficients
for France - Auvergne and z=b (SRTM -1 arcsec)

1— 4,

-10 -08 -06 -04 -02 0.0 0.2 0.4 06 08 1.0 -0.0012 -0.0009 -0.0006 -0.0003 0.0000 0.0003 0.0006 0.0009 0.0012

% 2 4 1@4 sm,B 1 04,
0z z z Of3 zcos,B zcos,B oA
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The approach thus rests: on the solution of the transformed
Laplace differential equation for the input gravity disturbances
given on the surface of the oblate ellipsoid of revolution.

Green’s function representation of the solution and the method
of successive approximations are used:

T=1im7, , T,=F+KT,

where

FO) =2 [ Sg0N(x.p)d,S

a‘(2611

is a harmonic function and

KT, ,(y) = —i 5[T,,(x)h(x)| N(x, ) d,V

Qll

e

is an integro-differential operator applied on 1 .
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