

Assessment of Distributed Snow Modeling using Ground and Remote Sensing Data in Mountainous Eastern Turkey

A. Arda ŞORMAN¹ and M. Cansaran ERTAŞ²

¹Eskisehir Technical University, Turkey (asorman@eskisehir.edu.tr) ²Eskisehir Technical University, Turkey (mcertas@eskisehir.edu.tr)

Snow Potential in Turkey

- * Ave. elevation of Turkey ~ 1140 m, snow is frequent
- \circledast Snow stays on ground → Dec. May. (6 months)
- Most transboundary rivers are fed by snowmelt

Aim of Study

Apply a simple distributed snow model for a

snow dominated region in Turkey

Validate the results with ground and

remotely sensed data

Area of Interest

Eastern Turkey, Sub-basin of Euphrates River (transboundary waters)

- Area: 10,275 km²
- Hypsometric Mean: 2000 m

- Elevation Range: 1125 3500 m
- Mean Slope: 20 %

Station Distribution

5/13

<u>Snow Model – SNOW-17</u>

1. Form of precipitation,

- 2. Accumulation of the snow cover,
- 3. Energy exchange at the snow-air interface,
- 4. Internal state of the snow cover,
- 5. Transmission of water through the snow cover, and
- 6. Heat transfer at the soil-snow interface.

Eric Anderson, 1973

<u>Snow Model – SNOW-17</u>

Snow Model Calibration

Distributed Snow Model (2015 - 2018)

Model Results & Validation

Basin wide Snow Covered Area (SCA) Validation

10/13

Model Results & Validation

Basin wide Snow Water Equivalent (SWE) Validation

EGU General Assembly 2020

Conclusions

- First time distributed snow modeling conducted in Turkey
- Calibration: 23 Snotel stations $NSE_{ave} = 0.81$ (range 0.49 – 0.96)
- Validation: 17 Snotel stations $NSE_{ave} = 0.66$ (range 0.20 - 0.94)

Validation: 3 different RS products used for Snow Covered Area NSE_{ave} = 0.91 (range 0.82 - 0.95)

- Study shows acceptable results to be utilized for hydrologic modeling and reservoir management.
- In the future, with the setup of more SnoTel stations, increase in model performance is expected.

Thank you !!

