

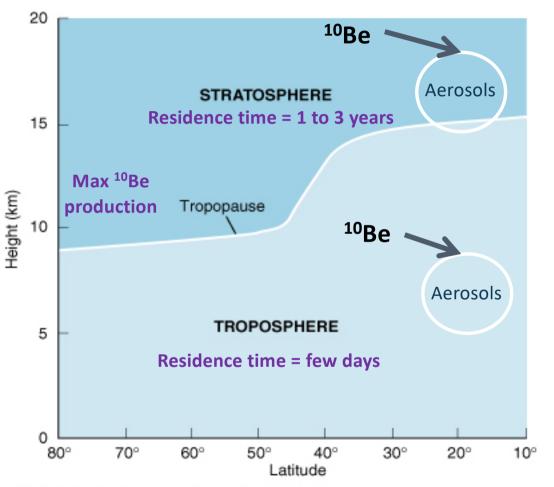
Persistent draining of the stratospheric ¹⁰Be reservoir after the Samalas volcanic

eruption (1257 CE)

M. Baroni¹, E. Bard¹, J.-R. Petit², S. Viseur¹, ASTER Team¹

¹ CEREGE, Aix-en-Provence, France, ²IGE, Grenoble, France

Context


¹⁰Be, a cosmogenic isotope, recorded in ice cores is a proxy of past solar activity

BUT

Its deposition is influenced by stratospheric volcanic eruptions because :

-> ¹⁰Be get attached to aerosols to fall on the Earth's surface

-> The ¹⁰Be reservoir is located in the polar stratosphere

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

e.g. Poluianov et al. (2016), Webber and Higbie (2007)

Results

Key Points:

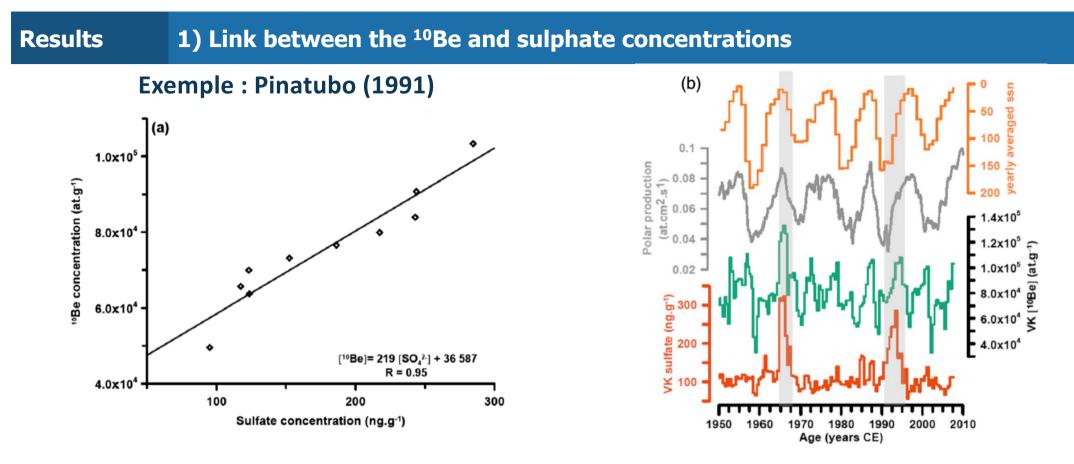
JGR Atmospheres

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JD029823

RESEARCH ARTICLE 10.1029/2018JD029823

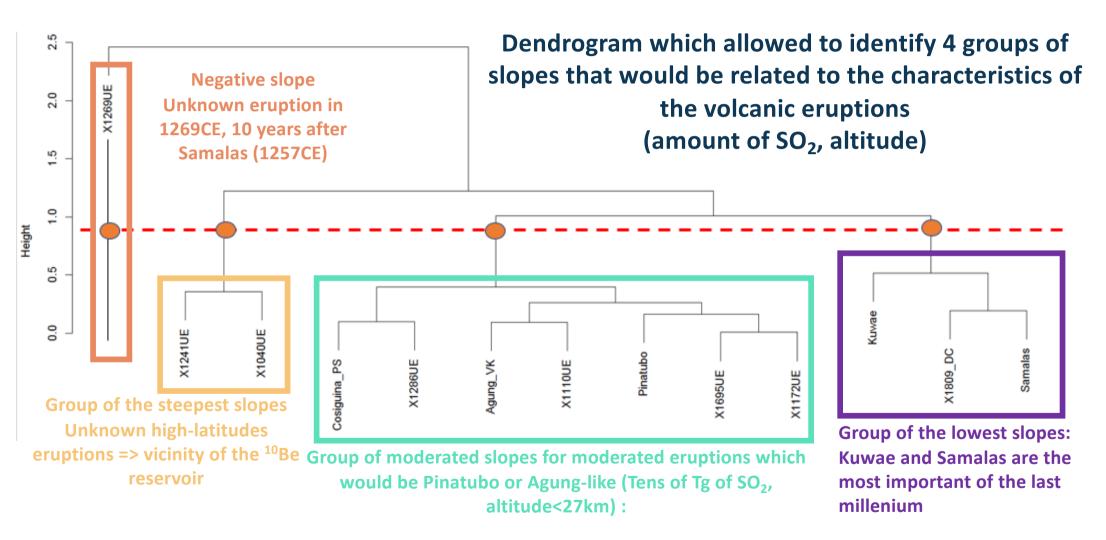
†Georges Aumaître, Didier L. Bourlès, Karim Keddadouche Mélanie Baroni¹, Edouard Bard¹, Jean-Robert Petit², Sophie Viseur¹, and ASTER Team¹,

Persistent Draining of the Stratospheric ¹⁰Be Reservoir


After the Samalas Volcanic Eruption (1257 CE)

¹Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France, ²IGE, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France

The sulphate and ¹⁰Be concentrations were measured in the exact same samples at a subannual resolution.


⇒significant relationship between the sulphate and ¹⁰Be concentrations for 14 volcanic eruptions detected over the last millennium in 3 different Antarctic ice cores/snow pits, at Vostok, Dome C and South Pole

⇒Identification of stratospheric volcanic eruptions (most are unknown) in accordance with other independent methods (Sulphur isotopic anomaly of volcanic sulphate and bipolar volcanism)

Meaning of the relationship : [¹⁰Be] = a [SO₄²⁻] + b 'a' => efficiency of ¹⁰Be washout from its stratospheric reservoir 'b' => indication on the size of the ¹⁰Be stratospheric reservoir at the time of the eruption => ultimately depending on solar modulation

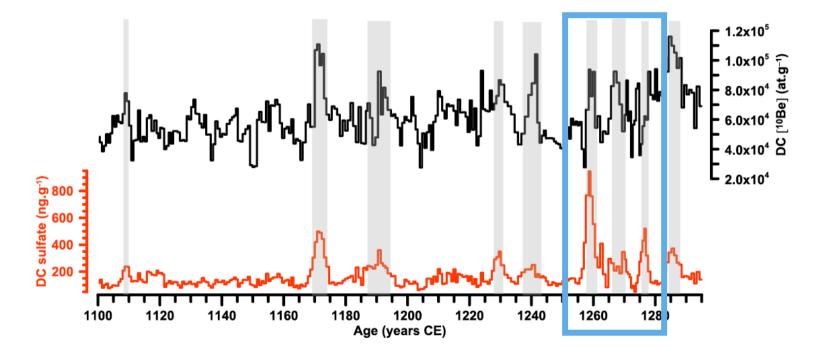
Results 2) Classification of volcanic eruptions

Results3) The Samalas (Indonesia), 1257 CE

The Samalas eruption (1257 CE)

158 +/- 17 Tg of SO₂, 43 km of altitude (Lavigne et al., 2013)

```
(ex : Pinatubo (1991) 15 Tg of SO<sub>2</sub>, 25 km (e.g. Guo et al., 2004))
```



This eruption stand out of the other from many aspects (highest sulphur isotopic anomalie and near-null oxygen isotopic anomaly (e.g. : Savarino et al., 2003, Gautier et al., 2019) => exhaustion of regular oxidative pathways of SO₂ (amount effect) and/or altitude effect

Results 3) The Samalas (Indonesia), 1257 CE

- The Samalas has the lowest positive slope of the 14 we studied
- The negative slopes for eruptions following the Samalas eruption (in 1269CE and 1276CE) seems to reflect a disturbance of the ¹⁰Be polar stratospheric reservoir which would have been drained out for at least a decade.

=> effect of altitude (only gases > 30-35km of altitude and age of air masses of 5yrs) and/or amount of SO₂ emitted (delay of SO₂ oxidation)

Thanks

Acknowledgements : Sandrine Choy, Adrien Duvivier, Nina Davtian C2FN IPEV ANR VOLSOL