


Greenland as a freshwater source to the ocean (note 1 Sv = 106 m3/s)

1991-2015 mean freshwater flux: 840 Gt/yr = 27 mSv
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Liquid freshwater released at marine-terminating glaciers generates
upwelling plumes
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This upwelling plays an important role in bringing nutrients into the photic

zone and the freshwater exported to the ocean may influence large-scale
ocean circulation
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Aim of this study: Characterize the depth and properties of
plumes of upwelling freshwater around the Greenland Ice Sheet




Methods — buoyant plume model to capture dynamics of upwelling
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Data — freshwater input to ocean

Locations and
magnitude of
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(2005-2017 mean)
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Regional climate model RACMO2.3p2 Hydrological drainage basins
for surface runoff Slater et al. in prep.
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Data — ocean properties at calving fronts are extrapolated into fjords from the shelf, taking account of

bathymetry. Shelf properties come from reanalysis
o9 ° .
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Data — ocean properties at calving fronts are extrapolated into fjords from the shelf, taking account of

bathymetry. Shelf properties come from reanalysis
o9 ° .

ORASS5 — % degree ocean reanalysis
(2005-2017 mean)

Jakobshavn Isbrae, west Greenland
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Results — land-terminating versus marine-terminating
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SW: 14% marine, 86% land
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Results — calving front water properties

Black dots: values at the grounding line. Grey
dots: full depth profiles.
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Results — calving front water properties

Black dots: values at the grounding line. Grey
dots: full depth profiles.

NW: cooler
and slightly
fresher
water at
calving
fronts
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Upwelling in plumes results in a mixing of ambient water and freshwater — use buoyant
plume theory to quantify the mixture
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Example for Jakobshavn Isbrae, west Greenland

This mixture is close to what is exported from the fjord into the ocean



Upwelling in plumes results in a mixing of ambient water and freshwater — use buoyant
plume theory to quantify the mixture
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This mixture is close to what is exported from the fjord into the ocean



Upwelling in plumes results in a mixing of ambient water and freshwater — use buoyant
plume theory to quantify the mixture
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Example for Jakobshavn Isbrae, west Greenland

This mixture is close to what is exported from the fjord into the ocean



Upwelling in plumes results in a mixing of ambient water and freshwater — use buoyant
plume theory to quantify the mixture
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Example for Jakobshavn Isbrae, west Greenland

This mixture is close to what is exported from the fjord into the ocean



Quantification of the flux and properties of waters exported from fjords to the ocean

Export is dominated by the large tidewater systems
Within regions, different systems export water that has similar properties
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Note caveat: there are additional processes in fjords, beyond upwelling, that can
modify the export and that are not accounted for here



Total upwelling
- Just 17 mSv of freshwater input drives >1 Sv of upwelling
Most is in SE and NW Greenland as these have many tidewater glaciers
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At what depth is the export from fjords to the ocean occurring?

potential temperature (°C)

Vast majority in upper 200 m, but a majority is below 50 m, not at the surface (as commonly imposed in ocean models)
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At what depth is the export from fjords to the ocean occurring?

Results here
are
consistent
with
observations
from Sermilik
Fjord, SE
Greenland
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At what depth is the export from fjords to the ocean occurring?
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Freshwater export depth

freshwater input depth (m)
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Summary

Presented a climatology for freshwater export from
Greenland’s tidewater glacier fjords to the ocean —a
key boundary condition for ocean models

neutral buoy.

Just 17 mSv of freshwater entering fjords at grounding -200
lines drives upwelling (and export) >1 Sv. Thus, while
the pure freshwater input is quite small, what is
exported is a much larger flux of diluted freshwater,
which may therefore have a role in setting the
properties of Greenland’s boundary currents
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