A Microphysics Guide to Cirrus – Part II: Climatologies of Clouds and Humidity from Observations

Martina Krämer

Forschungszentrum Jülich Institut für Energie- und Klimaforschung 7 (Stratosphäre), Jülich

&

JGU Mainz Institut für Physik der Atmosphäre, Mainz

(m.kraemer@fz-juelich.de)

EGU 2020, 5 May, Vienna

SATELLITE OBSERVATIONS

CONCLUSIONS O

Some results on cirrus clouds from:

A Microphysics Guide to Cirrus – Part II: Climatologies of Clouds and Humidity from Observations

Review status

This preprint is currently under review for the journal ACP.

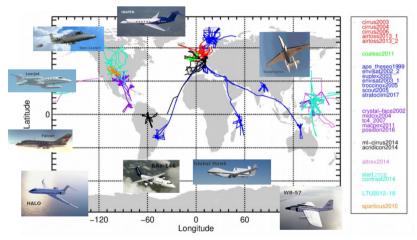
Martina Krämer^[1], 2, Christian Rolf^[1], Nicole Spelten¹, Armin Afchine^[1], David Fahey^[1]³, Eric Jensen⁴, Sergey Khaykin⁵, Thomas Kuhn¹⁰, Paul Lawson⁷, Alexey Lykov⁸, Laura L. Pan⁴, Martin Riese^[1], Andrew Rollins³, Fred Stroh¹⁰, Troy Thornberry¹⁰, Veronika Wolf⁶, Sarah Woods⁷, Peter Spichtinger¹⁰, Johannes Quaas¹⁰, and Odran Sourdeval¹⁰, Andrew Rollins³, Fred Stroh¹⁰, ¹Institute for Energy and Climate Research (IEK-7), Research Center Jülich, Jülich, Germany ²Institute for Strongsheric Physics (IPA), Johannes Gutenberg University, Mainz, Germany ³NOAA ESRL CSD, Boulder, USA ⁴NCAR, Atmospheric Chemistry Observations and Modeling Laboratory, Boulder, USA ⁵LATMOS/IPSL, UVSQ, Sorbonne Université, CNRS, Guyancourt, France ⁶Luleå University of Technology, Division of Space Technology, Kiruna, Sweden ⁷SPEC Inc., Boulder, CO, USA ⁸Central Aerological Observatory (CAO), Department of Upper Atmospheric Layers Physics, Moscow, Russia ⁹Leipzig Institute for Meteorology (LIM), Universität Leipzig, Germany ¹⁰Univ. Lille, CNRS, UMR 8518 – LOA – Laboratoire d'Optique Atmosphérique, F-59000 Lille, France

https://www.atmos-chem-phys-discuss.net/acp-2020-40/

SATELLITE OBSERVATIONS

CONCLUSIONS O

CLIMATOLOGIES OF CIRRUS CLOUDS


from airborne in-situ and satellite remote sensing observations

- the climatologies serve as a guide to the properties of cirrus clouds
- the new in-situ data base provides insights into boreal mid-latitudes and the tropics
- the satellite-borne data set offers global and regional overviews

SATELLITE OBSERVATIONS

AIRBORNE IN-SITU DATA BASE

24 campaigns (1999-2017), 185 flights (\approx 200 h in cirrus): IWC, N_{ice}, RH_{ice}

Ice Water Content, Ice Crystal Number, Relative Humidity

Latitude (deg)

.

2316

20779-

64830

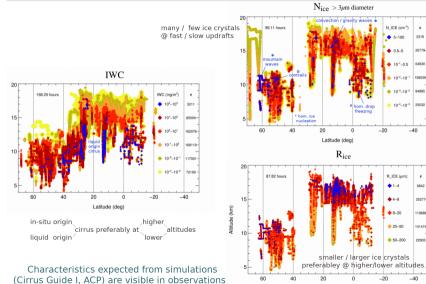
158039

-40

.

6643

25277-


119888

141419-

22903

40

CIRRUS OBSERVATIONS: VERTICAL PORTRAYAL

SATELLITE OBSERVATIONS 0000

IN-SITU AND LIQUID ORIGIN CIRRUS

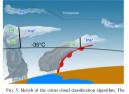
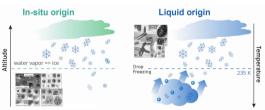



FIG. 5. Sketch of the cirrus cloud classification algorithm. The Liq refers to liquid-origin cirrus, Ins to in situ cirrus, and Ins* are liquid-origin cirrus that are erroneously classified by our algorithm as in situ. Gasparini et al. (2018)

Luebke et al. (2016), Krämer er al. (2016), Wolf et al. (2018)

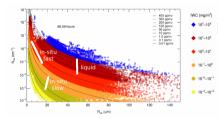
Typical characteristics of cirrus types in the initial stage				
ORIGIN	IWC	N _{ice}	R _{ice}	weather system
slow updraft (heterogeneous ice nucl.)				
IN-SITU	low	few	large	frontals systems (WCBs)
LIQUID	high	more	larger	
fast updraft (homogeneous ice nucl.)				
IN-SITU	high	many	small	gravity waves, convection
LIQUID	high	more	small & larger	

ice particles $\gtrsim 20 \mu m$ dominate the PSD, max. size up to thousand μm diameter (PSD: particle size distribution).

Refinement of results from Cirrus Guide I (ACP) and Luebke et al. (2016)

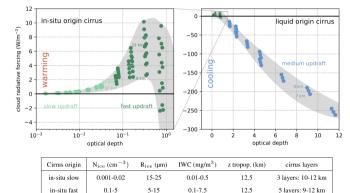
IN-SITU AND LIOUID ORIGIN CIRRUS

Simulated radiative forcing


for exemplary in-situ slow and fast updraft and liquid origin cirrus.

in-situ fast

liquid


0.1-5

0.05-2

Cirus Guide II:

- ➤ In-situ origin cirrus ➡ slight warming
- Liquid origin cirrus strong cooling effect
- How well are they represented in global models?
- Partitioning between in-situ and liquid origin cirrus ?

0.1-7.5

30-375

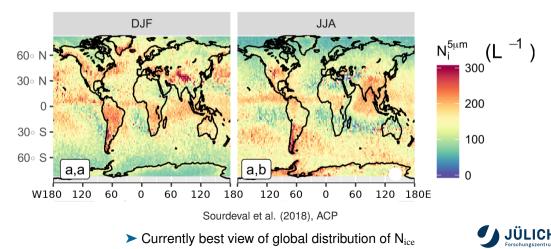
12.5

10

5-15

50-70

3 lavers: 7-9 km

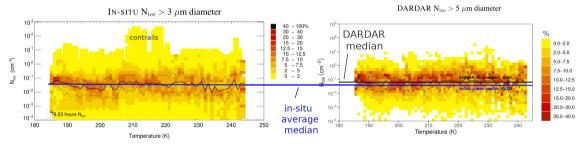

AIRBORNE IN-SITU OBSERVATIONS

SATELLITE OBSERVATIONS

CONCLUSIONS O

SATELLITE REMOTE SENSING DATA BASE Nice (2006 - 2016)

DARDAR N-ice



SATELLITE OBSERVATIONS

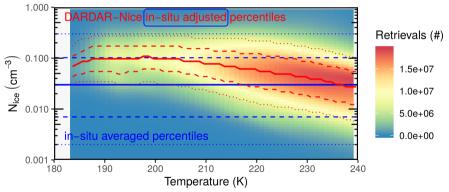
Comparing in-situ and satellite $N_{ice} \label{eq:comparing}$

Climatologies of frequencies in 1K T-bins

(data from five field campaigns)

Overall good agreement between in-situ and DARDAR-N_{ice}

> The excess of Nice by a factor of 1.73 in DARDAR is caused by the retrieval method



SATELLITE OBSERVATIONS

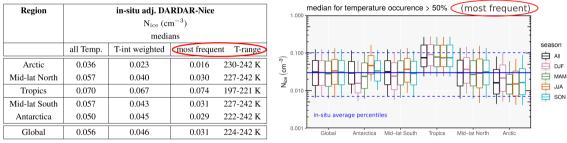
N_{ice} from satellite

Global climatology of frequencies across the entire T-space

2006 - 2016

> Half of the cirrus clouds are found in the temperature range 224 - 242 K

> This warmest cirrus layer and contain significant amount of liquid origin cirrus


AIRBORNE IN-SITU OBSERVATIONS

SATELLITE OBSERVATIONS

CONCLUSIONS O

N_{ice} FROM SATELLITE

Regional and seasonal medians

(most frequent median $N_{\rm ice}$: median for the temperature range containig 50% of the cirrus clouds)

> good agreement between most frequent in-situ and DARDAR-Nice medians - except tropics and Arctic

seasonal medians do not greatly vary

AIRBORNE IN-SITU OBSERVATIONS

SATELLITE OBSERVATIONS

CONCLUSIONS

CONCLUSIONS

- The global median N_{ice} of the most frequent cirrus is 0.031 cm³, in good agreement between satellite and in-situ observations
- Regarding the frequent appearance of liquid origin cirrus together with their strong cooling effect is a motivation to investigate their influence on the overall cirrus radiative forcing on climate -

do they switch the sign from warming to cooling ?

