Implications of the TGO results on potential surface emissions of methane on Mars

Sébastien Viscardy, Séverine Robert, Justin Erwin, Frank Daerden, Lori Neary, Ian Thomas, and Ann Carine Vandaele

Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

EGU 2020, Vienna, Austria (May 4, 2020)

sebastien.viscardy@aeronomie.be

OMA

Mars Express PFS

nature geoscience ARTICLES https://doi.org/10.1038/s41561-019-0331-9

Independent confirmation of a methane spike on Mars and a source region east of Gale Crater

Marco Giuranna [©]^{1*}, Sébastien Viscardy [©]², Frank Daerden [©]², Lori Neary [©]², Giuseppe Etiope [®]^{1,3,4}, Dorothy Oehler [©]⁵, Vittorio Formisano, Alessandro Aronica [©]¹, Paulina Wolkenberg^{1,6}, Shohei Aoki^{1,2,7,8}, Alejandro Cardesín-Moinelo⁹, Julia Marín-Yaseli de la Parra⁹, Donald Merritt⁹ and Marilena Amoroso¹⁰

Giuranna et al., Nature Geoscience (2019)

TGO ACS and NOMAD

LETTER

https://doi.org/10.1038/s41586-019-1096-4

No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations

Oleg Korablev¹*, Ann Carine Vandaele², Franck Montmessin³, Anna A. Fedorova¹, Alexander Trokhimovskiy¹, François Forget⁴, Franck Lefèvre³, Frank Daerden², Ian R. Thomas², Loïc Trompet², Justin T. Erwin², Shohei Aoki², Séverine Robert², Lori Neary², Sébastien Viscardy², Alexev V. Grigoriev¹, Nikolay I. Ignatiev¹, Alexey Shakun¹, Andrey Patrakeev¹, Denis A. Belyaev¹, Jean-Loup Bertaux^{1,3}, Kevin S. Olsen³, Lucio Baggio³, Juan Alday⁵, Yuriy S. Ivanov⁶, Bojan Ristic², Jon Mason⁷, Yannick Willame², Cédric Depiesse², Laszlo Hetey², Sophie Berkenbosch², Roland Clairquin², Claudio Queirolo², Bram Beeckman², Eddy Neefs², Manish R. Patel⁷, Giancarlo Bellucci⁸, Jose-Juan López-Moreno⁹, Colin F. Wilson⁵, Giuseppe Etiope^{8,10,11}, Lev Zelenyi¹, Håkan Svedhem¹², Jorge L. Vago¹² & The ACS & NOMAD Team¹³

Korablev et al., Nature (2019)

Exercise 1: What is the probability that the TGO detects an emission event similar to that recorded by PFS in June 2013?

- 15.5 ppbv over 49,000 km² (PFS footprint) \rightarrow ~50 tons CH₄
- Let the total amount released be twice larger (**100 tons**), considering that PFS did not catch the entire plume

June 16, 2013: 15.5 ppbv ~0.005 ppbv when wellmixed around the planet

100 tons released from Gale crater at the same time of the year ($L_s = 336^\circ$)

Zonal mean of CH_4 mixing ratio 5, 10, and 15 days after surface release (simulation using the GEM-Mars GCM)

Methane found above 15 km within a few days (Viscardy et al., GRL, 2016; Giuranna et al., Nature Geoscience, 2019)

TGO solar occultations: April 21, 2018 – August 10, 2019

12-2018

02-2019 04-2019 06-2019

08-2019

06-2018 08-2018 10-2018

04-2018

- 100 tons of CH_4 released from Gale Crater at $L_s = 336^\circ$ and simulated over 17 days
- Statistical analysis of a large sample of sets of TGO solar occultations (3 examples given below)
- Size of the sample: 10,000
- Criterion: CH_4 detected if mixing ratio > 0.05 ppbv above 15 km

<u>Result</u>: probability that the TGO detects this emission event = 50.7% A lifetime of only a few days should be required to lower significantly this probability

<u>Question 2:</u> If the emission event detected by PFS takes place periodically, what is the minimum period T such that the background level remains always below the TGO detection limit?

- *X* : background level [ppbv]
- *k* : destruction rate
- τ : lifetime of CH₄ ($\tau = \frac{1}{k} = 300$ years)
- F: gas flux; 50 tons ($x_P = 0.005$ ppbv) released every time T
- x_T : TGO detection limit (0.05 ppbv)

Solution between two successive emissions:

 $X(t) = X(0) \exp\left(-\frac{t}{\tau}\right)$

An emission occurs when:

$$X(T) = x_T - x_P = x_T \exp\left(-\frac{T}{\tau}\right)$$

Result: period T = 32 years \rightarrow Event extremely rare

$$\frac{dX(t)}{dt} = F(t) - kX(t)$$

These two simple exercises suggest that:

- emission events similar to that detected by PFS in June 2013 could have been observed by the TGO (with a non-negligible probability) if they had taken place after April 2018
- the PFS detection is most likely inconsistent with the TGO detection limit unless:
 - PFS was at the right place at the right time, and/or
 - a fast destruction mechanism to be discovered is at work on Mars, which would lower drastically the lifetime of methane to a few days and have to be "compatible with our wide quantitative understanding of Mars photochemistry" (Korablev et al., 2019).