International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests

Impact of pollen on throughfall biochemistry in European temperate and boreal forests

<u>Arne Verstraeten¹</u>, Elena Gottardini², Nicolas Bruffaerts³, Fabiana Cristofolini², Elena Vanguelova⁴, Johan Neirynck¹, Gerrit Genouw¹, Peter Waldner⁵, Anne Thimonier⁵, Anita Nussbaumer⁵, Mathias Neumann⁶, Sue Benham⁴, Pasi Rautio⁷, Liisa Ukonmaanaho⁷, Päivi Merilä⁷, Annika Saarto⁸, Jukka Reiniharju⁸, Bruno De Vos¹, Peter Roskams¹, Nathalie Cools¹, Geert Sioen¹, Nicholas Clarke⁹, Volkmar Timmermann⁹, Hans-Peter Dietrich¹⁰, Manuel Nicolas¹¹, Maria Schmitt⁵, Katrin Meusburger⁵, Silvio Schüler¹², Anna Kowalska¹³, Idalia Kasprzyk¹⁴, Katarzyna Kluska¹⁴, Łukasz Grewling¹⁵, Joanna Święta-Musznicka¹⁶, Małgorzata Latałowa¹⁶, Marcelina Zimny¹⁶, Małgorzata Malkiewicz¹⁷, Lars Vesterdal¹⁸, Miklós Manninger¹⁹, Donát Magyar²⁰, Hugues Titeux²¹, Gunilla Pihl-Karlsson²², Regula Gehrig²³, Marco Ferretti⁵

Objectives

The objective of this study is to assess the qualitative and quantitative impact of pollen/flowering on throughfall (TF) deposition fluxes in temperate and boreal deciduous and coniferous forests.

Materials and methods

1) Dissolution experiment

A 7-day dissolution experiment was conducted with bud scales and flower stalks of *Fagus sylvatica*, pollen of F. sylvatica, Quercus robur, Betula pendula, Pinus sylvestris, Pinus nigra, Picea abies and sterilized pollen of B. pendula. Per treatment 50±0.52 mg was added to 200 mL nitrate (NO₃⁻-N) solution (11.3 mg N L⁻¹) and we took 15 mL samples for chemical analysis after 2, 24, 48, 72, 96 and 168 hrs.

Fig. 1 a) Map of ICP Forests Level II plots (blue dots) and aerobiological monitoring stations (red

- 2) Interannual study
- We analysed the relationship between long-time monitoring data of TF deposition fluxes from 98 Level II monitoring plots of the ICP Forests and airborne pollen concentrations (Seasonal Pollen Integral, SPIn) from nearby aerobiological monitoring stations (Fig. 1) with generalized additive mixed models (GAMM) for potassium (K⁺), nitrate, ammonium (NH₄⁺-N), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), e.g.:

TF K⁺_{pollen} = s(SPIn, bs="cr", k=3) + VarIdent(Country)

- Sites were grouped according to dominant tree genus: *Fagus, Quercus, Pinus* and *Picea*. The 3 mixed stands were included in 2 groups.
- Per site the period with pollen in TF samples (arbitrary 2 months) was selected based on daily airborne pollen concentrations available for a limited number of sites and TF data (Table 1).
- The contribution of pollen to TF fluxes (absolute and in % of annual mean) was calculated and compared: *INPUT*_{pollen} = TF two months pollen distribution period – TF (previous + following month)

Preliminary results

- 1) Dissolution experiment
- Pollen released K⁺, phosphate, DOC, DON and small amounts of sulphate, sodium and calcium (not shown). About 10-20% of organic matter dissolved (Fig. 6).
- NO₃⁻-N gradually disappeared in samples with pollen from deciduous trees, reducing dissolved inorganic nitrogen (DIN), while NH₄⁺-N and (instable) nitrite (NO₂⁻-N) increased (Fig. 2).
- The contribution of bud scales and flower stalks to TF fluxes was limited to some K⁺ and DON.

triangles). b) Maps of Level II plots for the tree genera.

2) Interannual study

- Pollen contributed to TF most in *Quercus > Fagus > Pinus > Picea* stands (Fig. 3). Differences might be related to pollen reactivity and the amount of pollen distributed (Fig. 5).
- For *Fagus*, a mast flowering species, input from pollen was higher in years with SPIn > 80% of mean (Fig. 4).
- Pollen 'eats' about 2-3% of annual TF NO₃⁻-N deposition. More than indicated by the experiment, this was also observed for *Pinus* and *Picea*, presumably due to admixture of broadleaved pollen.

Institute of Silviculture (WALDBAU)

- In *Quercus* stands, more than 10% of annual TF K⁺, NH_4^+ -N and DON might derive from pollen/flowering.
- For *Fagus*, the modeling analysis broadly confirmed the results of the experiment, but model uncertainty was high for more sparse higher values of SPIn (Fig. 7). For *Quercus, Pinus* and *Picea* models were not always valid because pollen is dispersed each year, making it difficult to show the relationship.

Discussion

15000

10000

UNIVERSITY OF COPENHAGEN VSCIENSANO UNF GNAIK OFFICE AGRARKUTATÁSI SCIENSANO LA SCIENSANO OFFICE AGRARKUTATÁSI

- During the experiment DIN was reduced, presumably because it was lost as gaseous nitric oxide (NO). NO is a key signalling molecule involved e.g., in pollen germination and pollen tube growth (Domingos et al., 2015). Our results suggest that NO is produced via the nitrate reductase pathway.
 - The production of NH₄⁺-N might be the result of enzymatic degradation of amino acids as observed in the nectar of certain plants (Prŷs-Jones and Willmer, 1992).

Table 1 Periods selected for calculation of pollen contribution and modelling (number of Level II plots per tree genus) based on pollen and TF data.

	1 Apr-	15 Apr-	1 May-	15 May-	1 Jun-	
	31 May	15 Jun	30 Jun	15 Jul	31 Jul	Total
Fagus	24	5				29
Quercus	13	3				16
Pinus		4	10	6	4	24
Picea		4	9	14	5	32

8 20-

UCLouvain

Fig. 3 Contribution of pollen to TF deposition in kg ha⁻¹ a⁻¹ (left) and as a percentage of mean annual TF (right) for the four tree genera. Capital letters indicate groups with significantly different mean (p < 0.05).

Fig. 4 Contribution of *Fagus* pollen (all years, SPIn > 80% of mean, SPIn <= 80% of mean) to TF deposition in kg ha⁻¹ a⁻¹ (left) and as a percentage of mean annual TF (right).

Fig. 5 Mean annual SPIn per plot for the tree genera (from nearby stations).

Preliminary conclusions

Pollen is an overlooked factor in forest nutrient cycling, particularly for K⁺, DOC, DON, NO₃⁻-N, NH₄⁺-N and phosphate.

repetitions).

- Pollen might induce complex canopy N transformations.
- Sampling interval length might affect measured TF fluxes of individual N compounds.

¹Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium, ²Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy, ³Mycology and Aerobiology, Sciensano, Brussels, Belgium, ⁴Forest Research, Alice Holt Lodge, Farnham, Surrey, UK, ⁵Swiss Federal Research Institute WSL, Birmensdorf, Switzerland, ⁶Institute of Silviculture, Vienna, Austria, ⁷Natural Resources Institute Finland, ⁹Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway, ¹⁰Bayerische Landesanstalt für Wald und Forstwirtschaft, Munich, Germany, ¹¹Office national des forêts, Fontainebleau, France, ¹²Austrian Research Institute, Raszyn, Poland, ¹⁴University of Rzeszów, Poland, ¹⁵Adam Mickiewicz University, Poznan, Poland, ¹⁶University of Gdánsk, Gdánsk, Poland, ¹⁷University of Wroclaw, Wroclaw, Poland, ¹⁸University of Copenhagen, Frederiksberg, Denmark, ¹⁹NARIC Forest Research Institute, Sárvár, Hungary, ²¹Université catholique de Louvain, Louvain-la-Neuve, Belgium, ²²Swedish Environmental Research Institute IVL, Stockholm, Sweden, ²³Federal Office of Meteorology and Climatology MeteoSwiss

