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* Stable water isotope (SWI)
measurements show
contrasting signals during

cold and warm advection
> See slides 2 and 3

* Two case studies with
COSMOiso to identify the
main drivers of SWI anomalies
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boundary cold advection
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Schematic of opposite moisture fluxes and
isotopic composition of water vapour due to

air-sea interaction during cold and warm advection. Datasets

h, relative humidity with respect to sea surface temperature * SWI measurements in water vapour from
AT, temperature difference between atmosphere and ocean the Antarctic Circumnavigation Expedition
E ocean evaporation (or dew deposition of opposite direction) (ACE) & Thurnherr et al. 2020
P precipitation « COSMOiso #Pfahlet al. 2012 simulations of
d deuterium excess d=6?H-8-6'0 (Dansgaard 1964) cold and warm advection events during ACE

- dchanges during moisture diffusion due to the different diffusivities * Backward trajectories using the COSMOiso

of H,"80 and HD'¢O wind fields
- opposite d-anomalies in subsatured (cold advection) and super-

satured air (warm advection) due to opposite moisture fluxes


https://doi.org/10.5194/acp-2019-782
https://doi.org/10.5194/acp-12-1629-2012
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Histogram of hS versus d coloured by the atmosphere-ocean
temperature difference AT_  using ACE measurements.
The two case studies are shown with coloured lines.
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Negative 6?H- and positive d-anomalies in Ross Sea during cold P
air outbreak in the cold sector of an extratropcial cyclone (B
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https://doi.org/10.1175/JCLI-D-17-0592.1
https://polybox.ethz.ch/index.php/s/f2IHtu6GLMMOtzZ
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Positive 0°H- and negative d-anomalies during
passage of warm sector of extratropical cyclone
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Processes inducing low d during warm advection: ]
® air masses above 100 m a.s.l.: 3000/

moist adiabatic ascent and Rayleigh fractionation
during cloud formation

® 3ir masses below 100 m a.s.L.:
dew deposition on ocean surface

-28. December 2016

A  measurement location
" " @ arriving below 100m a.s.l.
: _ ® arriving above 100m a.s.l. ]
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dand h along backward trajectories from
measurement location at 22 UTC on 26.12.16
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