ETH zürich

Drivers of stable water isotope variability in the cold and warm sector of extratropical cyclones from two case studies in the Southern Ocean

Iris Thurnherr¹ (iris.thurnherr[at]env.ethz.ch), Franziska Aemisegger¹, Lukas Jansing¹, Katharina Hartmuth¹, Josué Gehring², Stephan Pfahl³, Maxi Boettcher¹, Alexis Berne², Heini Wernli¹

¹ Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, ² ENAC-LTE, EPF Lausanne, Switzerland, ³ Institute of Meteorology, Freie Universität Berlin, Berlin, Germany

Key results:

- Stable water isotope (SWI) measurements show contrasting signals during cold and warm advection
 - See slides 2 and 3
- Two case studies with COSMOiso to identify the main drivers of SWI anomalies

04. Feb 2017 00UTC 160°E 10°E 35°S 60°S 65°S 45°S 70°S 50°9 55°S -5 -2 1 4 7 10 13 16 19 22 0 2 4 6 8 10 12 14 16 18 d at lowest model level (~ 10m a.s.l.) [%] d at lowest model level (~ 10m a.s.l.) [%] High *d-excess* during Low *d-excess* during warm cold advection: advection : • strong ocean evaporation • Near surface: dew deposition into dry air • Upper part of marine boundary rapid moisture uptake by cold layer: cloud formation air outbreak airmasses

See slide 4

See slide 5

26. Dec 2016 2016 2017

Method

Schematic of opposite moisture fluxes and isotopic composition of water vapour due to air-sea interaction during cold and warm advection.

- **h**, relative humidity with respect to sea surface temperature
- ΔT_{ao} temperature difference between atmosphere and ocean
- **E** ocean evaporation (or dew deposition of opposite direction)

P precipitation

d deuterium excess $d=\delta^2 H-8\cdot\delta^{18}O$ (Dansgaard 1964)

- *d* changes during moisture diffusion due to the different diffusivities of H,¹⁸O and HD¹⁶O
- opposite *d*-anomalies in subsatured (cold advection) and supersatured air (warm advection) due to opposite moisture fluxes

Datasets

- SWI measurements in water vapour from (ACE) *P* Thurnherr et al. 2020
- COSMOiso *Pfahl et al. 2012* simulations of
- wind fields

Definitions:

the Antarctic Circumnavigation Expedition

cold and warm advection events during ACE Backward trajectories using the COSMOiso

ETH zürich

Two case studies with good agreement of ACE measurements and COSMOiso simulations (e.g. Pearson correlation between d in measurements and COSMOiso > 0.7)

Case study 1: 3. - 7. Feb 2017

- Cold air outbreak in Ross Sea
- high *d* at low *h*_s

Case study 2: 26. -28. Dec 2016

 Passage of warm sector of extratropical cyclone in Southern Indian Ocean

• Low *d* at high *h*_s

Histogram of h_s versus *d* coloured by the atmosphere-ocean temperature difference ΔT_{ao} using ACE measurements. The two case studies are shown with coloured lines. Negative δ^2 H- and positive *d*-anomalies in Ross Sea during cold air outbreak in the cold sector of an extratropcial cyclone

4/5

Push figure to start animation (or download Phere)

ETH zürich

Positive δ^2 H- and negative *d*-anomalies during

5/5