

Global validation of satellite-based and reanalysis surface solar radiation data sets

Jörg Trentmann, Uwe Pfeifroth, Roswitha Cremer, Martin Stengel

Motivation of this study

- Consistent evaluation of available global climate data records of surface irradiance
- → Identify regions of consistency and of inconsistency between the different data records
- → Focus on the absolute accuracy and decadal trends

Data: 3 reference data sets, 6 gridded data sets

- Reference Data
 - → BSRN, GEBA / WRDC, Buoy networks: TAO / TRITON, PIRATA, RAMA
- → Satellite Data
 - → CERES EBAF ed 4.0 (1°x1°; 2000-2018)
 - → CM SAF CLARA-A2.1 (0.25°x0.25°; 1982-2017)
 - → ESA Cloud_cci AVHRR-PMv3 (0.5°x0.5°; 1982-2018)
 - → GEWEX SRB v3 (1°x1°; 1983-2007)
- → Reanalysis Data
 - → ECMWF ERA-5 (0.25°x0.25°; 1983-2018)
 - → NASA MERRA-2 (0.5°x0.625°; 1980-2018)

Methods

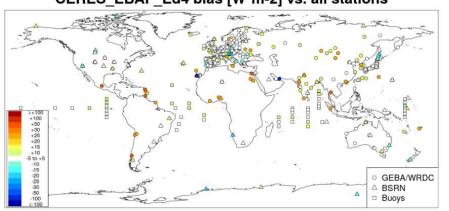
- → Evaluate monthly mean surface irradiance for a total of about 400 reference stations on land and ocean
- → Estimate various statistical quantities, e.g., bias, abs. bias, anomaly correlation, trends, ...
- → Provide information for the full period (for each gridded data set) and for a common time period (2000 to 2017) to allow comparison between data sets
- → Calculate the 'ensemble' climatology and trend including spread between the gridded data sets

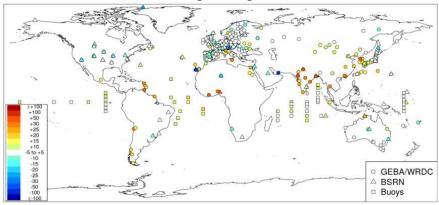
Results: Global values

		Full ti	me peri	ods	Common period (2000-2017)							
Data	#	bias	MAB	rmse	cor	#	bias	MAB	rmse	cor		
CERES	~69k	2.33	9.14	14.0	.85	~63k	2.30	9.15	14.0	.85		
CLARA	~119k	1.76	10.85	15.2	.82	~63k	2.15	10.28	15.4	.86		
ESA CCI	~119k	5.46	11.66	16.5	.79	~63k	4.76	10.93	15.8	.82		
GEWEX	~75k	3.81	13.13	18.4	.75							
ERA-5	~117k	7.29	12.55	16.1	.79	~63k	6.38	11.89	15.7	.81		
MERRA-2	~123k	19.6	23.61	22.8	.70	~63k	17.3	22.02	22.2	.72		

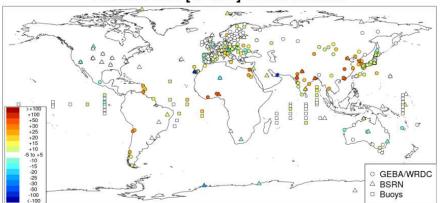
= number of months; MAB= mean absolute bias [W/m²]; bias, rmse in W/m²; cor= anomaly correlation

- → Satellite data compare better to reference data than reanalysis data records
- → CERES and CLARA-A2.1 data records have comparable quality
- → Quality of MERRA-2 data set significantly reduced compared to other data sets





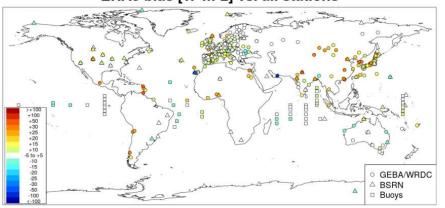
Regional Results: bias, common period, satellite data sets

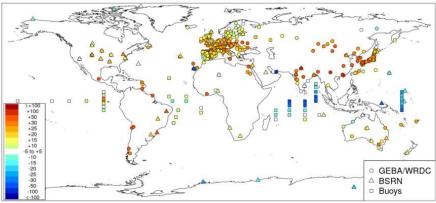

CERES EBAF Ed4 bias [W*m-2] vs. all stations

CLARA-A2 bias [W*m-2] vs. all stations

ESACCI bias [W*m-2] vs. all stations

- → Comparable spatial distribution*
- → Low bias in Europe, North America*
- → Overestimation of surface irradiance in China / India*





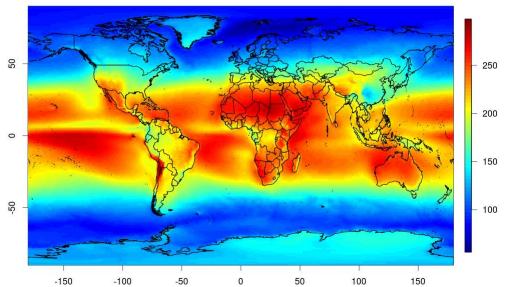
Regional Results: bias, common period, reanalysis data sets

ERA5 bias [W*m-2] vs. all stations

- **→** ERA-5
 - moderate bias in Europe, North America*
 - → overestimation of surface irradiance in China / India*

→ MERRA

- → Significant overestimation in Europe, North America, China India, Japan*
- → Underestimation in the Indian and Western Pacfic Oceans*



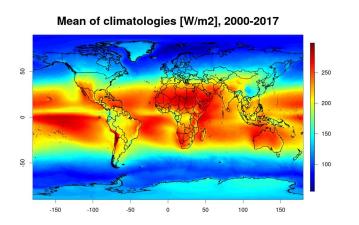
Surface Radiation Ensemble Climatology I

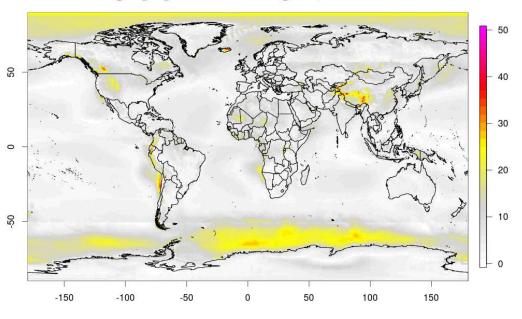
→ Estimate the surface radiation ensemble climatology (2000 to 2017) as the average of the mean surface irradiance from the three satellite data records and ERA-5 (i.e., neglecting MERRA due to degraded accuracy)

Mean of climatologies [W/m2], 2000-2017

Spatially averaged surface irradiance:

188 W/m²





Surface Radiation Ensemble Climatology II

- → Regions with largest (relative) range between data set:
 - → Southern polar ocean
 - → Himalaya
 - → West Coast of South America

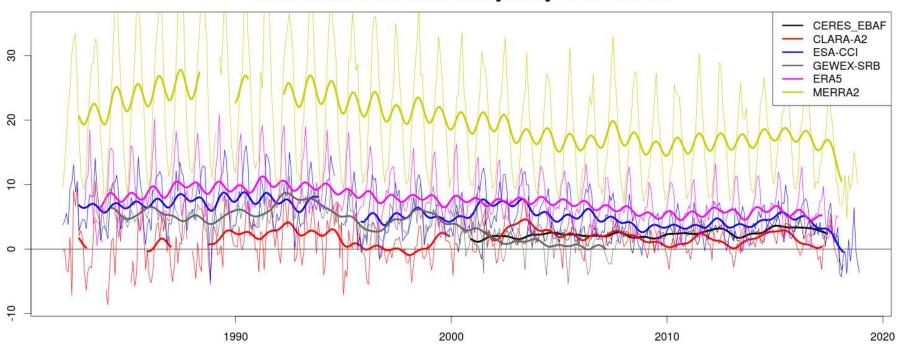
Range [%] of climatologies, 2000-2017

Evaluation by reference dataset

	CERES		CLARA		ESA_CCI			ERA-5			MERRA-2				
Ref Data	bias	MAB	cor	bias	MAB	cor	bias	MAB	cor	bias	MAB	cor	bias	MAB	cor
BSRN	-0.6	8.4	.90	-1.8	9.8	.89	0.7	10.2	.84	2.7	10.1	.85	8.5	19	.76
GEBA/WRDC	2.6	9.3	.85	2.3	10.4	.85	5.3	11.1	.81	7.3	12.2	.81	20	23	.73
Buoys	2.9	7.9	.86	6.0	9.5	.88	4.3	9.6	.83	-0.7	10.8	.79	-6.3	19	.67

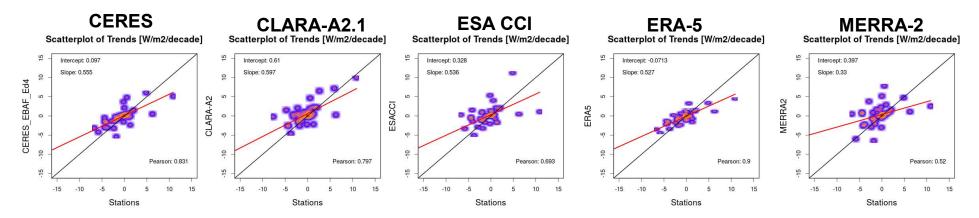
MAB= mean absolute bias [W/m²]; bias in W/m²; cor= anomaly correlation

- → Comparable performance for all reference data sets
- → No systematic uncertainty in any reference data set of monthly mean surface irradiance
- → The correlation with BSRN data is highest for all gridded data sets



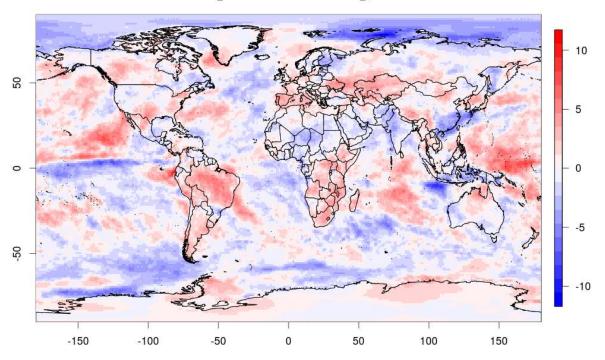
Validation: Stability / Trend

Times series of the mean bias [W/m2] vs. all stations


Constant bias required for high quality estimates of trends / changes

Evaluation of Trends, correlation (2000 – 2017)

- → Most station-based trends (2000 2017) are within ±3 W/m2/dec
- \rightarrow Correlation coefficients > ~0.7 for all data sets except MERRA-2
- → Gridded data sets tends to underestimate the absolute value of the trend, ie., slopes are always well below 1.

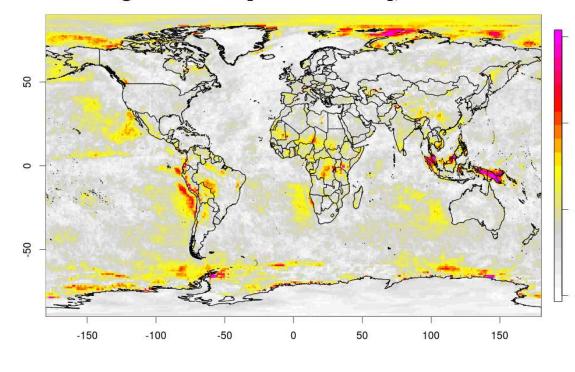


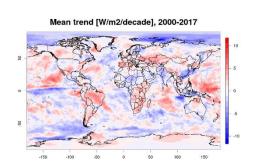
Average trend based on gridded data sets*

Mean trend [W/m2/decade], 2000-2017

- Substantial regional differences in the mean trend
- See the trends for the individual data sets in the Appendix

^{*}Results from MERRA-2 not included in the average



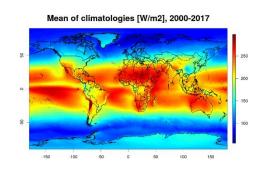


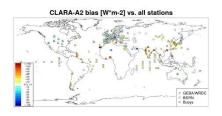
Range of the trends based on gridded data sets*

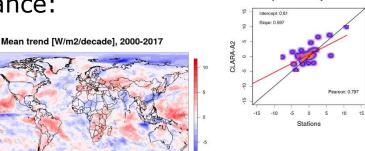
Range of trends [W/m2/decade], 2000-2017

- Data sets agree on the trend in many regions
- Regions with higher range include Indo-Pacific, Arctic, Western South America

^{*}Results from MERRA-2 not included in the average







Summary

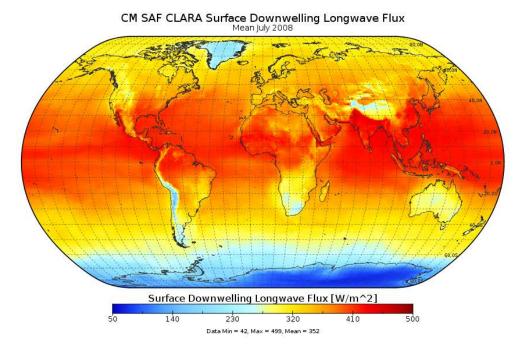
- → Satellite-based data sets of surface irradiance outperfom reanalysis data set
- → ERA-5 performs significantly better than MERRA-2
- → Measurements from buoy networks are a useful source of irradiance data
- → Best estimate of Global Surface Irradiance:
 188 W/m²
- → Trends vary regionally

Scatterplot of Trends [W/m2/decade]

Appendix

CM SAF CLARA-A2

→ Variables


- → Cloud properties
- → Surface albedo
- → Surface Radiation

→ Resolution

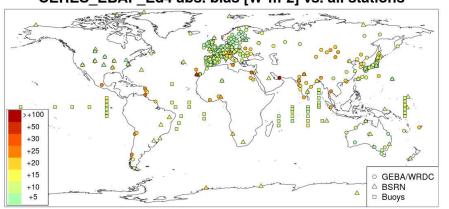
- → Spatial: 0.25° × 0.25°
- → Temporal: daily-, pentad-, monthly mean

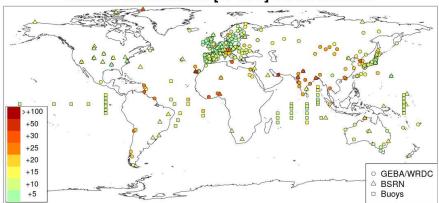
Coverage

- → Spatial: global
- → Temporal: 1982 to 2015 (2016 to 2019 available upon request)
- → Available at www.cmsaf.eu

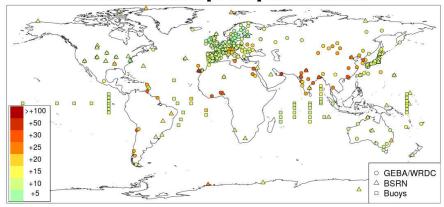
Karlsson, K.-G. et al., (2017) CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data, *Atmos. Chem. Phys., 17*, 5809-5828, doi:10.5194/acp-17-5809-2017

DOI:10.5676/EUM_SAF_CM/CLARA_AVHRR/V002





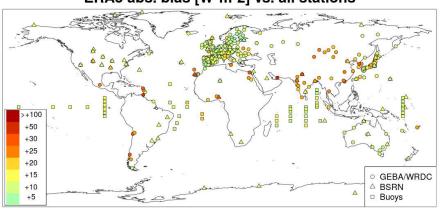
Regional Results: abs. bias, common period, satellite data sets

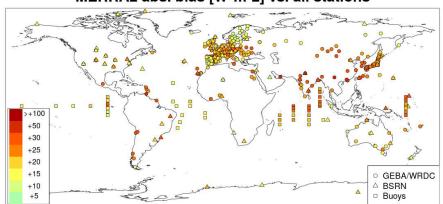

CERES EBAF Ed4 abs. bias [W*m-2] vs. all stations

CLARA-A2 abs. bias [W*m-2] vs. all stations

ESACCI abs. bias [W*m-2] vs. all stations

→ Comparable spatial distribution*

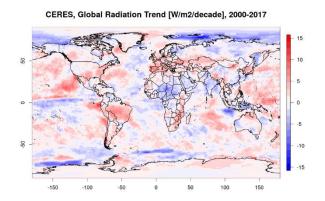


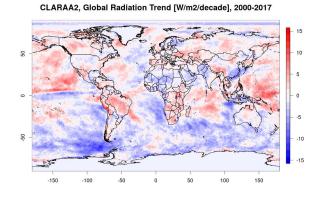


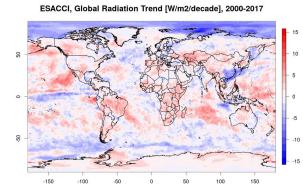
Regional Results: abs. bias, common period, reanalysis data sets

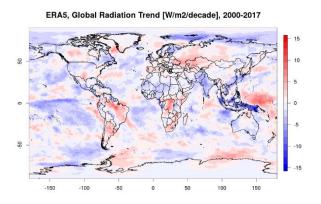
ERA5 abs. bias [W*m-2] vs. all stations

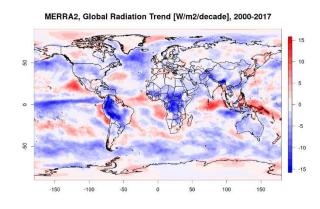
MERRA2 abs. bias [W*m-2] vs. all stations










Trends (2000 – 2017), satellite and reanalysis data

- Many regions with consistent trends
- → MERRA-2 has different pattern compared to the other data sets

