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• Summary and conclusion
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Hurricane vortex initialization over oceanic regions
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Hurricane Florence Observed by Satellite Series
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• The center of Hurricane Florence at 1500 UTC 4 September 2018 was
covered by the swaths of both NOAA-20 ATMS and AMSR2 at the time.

• The AMSR2, NOAA-20 ATMS, MWTS, and S-NPP ATMS swaths can all
observe the same hurricane four times in a one-hour time interval twice daily.
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Tθ p( ) =C0 p,θ( )+ Ci p,θ( )Tb,θobs i( )
i=i1,p

i2,p

∑

The atmospheric temperature at a specific level T(p) is expressed as a
weighted linear combination of brightness temperature observations at
different channels (Tian and Zou, 2018)

		

Tθ p( )
Ci p,θ( )
Tb ,θ
obs i( )

θ

− atmospheric temperatures

− regression coefficients trained with ECMWF temperatures

− ATMS brightness temperatures at channels 5-15
− local zenith angle denoting scan positions

Tian, X. and X. Zou, 2016: ATMS and AMSU-A derived warm core structures using a modified 
retrieval algorithm. J. Geophy. Res., 121, 12,630-12,646. 

Tian, X. and X. Zou, 2018: Polar-orbiting satellite microwave radiometers capturing size and 
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Hurricane Warm Core Retrievals with 
Microwave Temperature Sounders



Warm Core Structures at 250 hPa
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• Hurricane Florence was covered
three times within a period of one
hour

NOAA-20 1548 UTC FY-3D 1619 UTC

S-NPP 1640 UTC

• Even within an hour, the peak
intensities of the warm core have
been rapidly evolving



TPW retrieval from AMSR2
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• Over oceans, AMSR2 radiance
observations can be used to retrieve
geophysical products such as TPW, the
LWP, SSW and SST (Wentz and
Meissner, 2000)
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• The TPW fields within TCs retrieved
from AMSR2 observations are highly
axisymmetric, as The wavenumber-0
component accounts for about 90% of
the total spectra from the center to the
300-km radial distance

Wentz, F. J. and Meissner, T. 2000. Algorithm Basis
Document (ATBD) AMSR Ocean Algorithm, 2nd
Ed. IEEE, Santa Rosa, CA

TPW at 1624 UTC 
5 September 2018



Azimuthal Spectral Analyses
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A spectral analysis is conducted on the
spatial distribution of radiances observed
by GOES-16 ABI channel 13 at 1500
UTC 4 September 2018.

(mW m-2 sr-1)



Axisymmetry of Hurricane Florence

10

• The wavenumber-0 spectrum
percentage (i.e., the axisymmetric
component) was calculated from
GOES-16 ABI Ch13 radiance
observations during 1–7 September
2018 at 3-hour intervals
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• Florence is characterized by an
increased axisymmetry as it went
through intensification during 4–6
September 2018

• Due to the strong impact of
convection, regions of large
axisymmetry are confined to
relatively small radial distances



A Nonhydrostatic Axisymmetric Hurricane Model
(Rotunno and Emanuel, 1987)
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dql

dt
= Mql

+ Dql

θ ⎯ potential temperature 

qv ⎯ water vapor  mixing ratio

ql ⎯ liquid water mixing ratio

π ⎯ pressure perturbation

u ⎯ radial wind

v ⎯ tangential wind

w ⎯ vertical wind

The RE model simulates axisymmetric and compressible
flow evolutions on the f-plane. The governing equations
are written in a cylindrical coordinate (r, ϕ, z).
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Staggered Grids
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The model variables are placed on a staggered
grid, whose alignment is shown in the figure
above. Variables including θ, π, qv and ql also
sit on the grids of v.

A rigid lid is placed on
the upper boundary. The
5 km at the top of the
domain serves as a
sponge layer to
dissipate vertically
propagating gravity
waves with a
Newtonian damping
term on the right hand
side on all the
prognostic equations.



RE Tangent Linear (TLM) and Adjoint (ADJ) Model
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The forecast at time tr from an initial time t0 made by the nonlinear RE
model can be written symbolically as

   x tr( ) = Qr x( )x0

Linearization of the RE model gives the so-called tangent linear model
(TLM), which can be written as

   
x ' tr( ) = Pr x( )x '0 =

∂Qr

∂x
x '0

The adjoint model is then defined as

   x̂
r = Pr

T x( ) x̂ tr( )

    x̂ tr( ) = forcing  term( ),r = R,  R −1,  …,  0



Correctness Check of TLM and ADJ 
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The correctness of TLM may be checked
following the relationship of

   
Φ α( ) = Qr x +αh( )−Qr x( )

αPrh
= 1+O α( )

The correctness of the adjoint
model can be checked by the
following equality

			 Prx0
'( )T Prx0'( ) = x0

'( )T PrT Prx0'( )
With the same setup as in the
equation of TLM correctness
check, the LHS of the
equation above is

1914897.7637156348,
the RHS is

1914897.7637156344,
achieving a more than 16-digit
accuracy.



Hurricane Florence Experiment Setup
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The measurements from AMSR2, NOAA-20 ATMS, MWTS and S-
NPP ATMS observed the center of Hurricane Florence at 1541, 1548,
1619 and 1639 UTC 4 September 2018 will be assimilated to obtain
an optimal analysis at 1530 UTC.

Analysis 
Time

UTC Time



Axisymmetric Components in Observations
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• The azimuthally averaged potential temperature anomalies are positive
and negative below and above an altitude of about 13-14 km at the
center and 11-12 km near the center

• Hurricane eye was resolved by AMSR2 as the dip of TPW shows at the
center.
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4D-Var Vortex Initialization Experiment Design
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The axisymmetric components of the TPW and warm cores are
assimilated in the 4D-Var VI experiments. A cost function defined
below is then minimized in a 4D-Var VI experiment

			
J(x0)=

1
2(x0 − xb)

TB−1(x0 − xb)+
1
2 Hr(xr )− yr( )−1
r=0

N

∑ Or
−1 Hr(xr )− yr( )

x0 is the analysis vector at t0
xb is the background field
yr is microwave retrievals of TPW and the

warm core at tr
Hr is the observation operator connecting

observation and model state variables



Minimization of the Cost Function
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The gradient of J with respect to x0 can be calculated by the
following mathematical expression

			
∇x0

J =B−1(x0 − xb)+ Pr
T

r=0

N

∑ Hr
TOr

−1 Hr(xr )− yr( )

Similar with the TLM, the correctness of the gradient may be
checked as shown in the equation below

			
ψ (α )≡ J(x0 +αh)− J(x0)

αhT∇J(x0)
=1+O(α )



Convergence of the Minimization
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• The variation in |Y(a)-1| with respect to the
perturbation magnitude parameter 𝛂 linearly
approaches unity as expected

• The cost function decreases by two orders of
magnitude and the norm of the gradient by
more than three orders in 45 iterations
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Background at 1530 UTC
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The background field is obtained by running a 3.5-hour forecast with
RE model initialized by the azimuthally averaged ERA5 reanalysis
at 1200 UTC 4 September 2018.
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Numerical Results of the Analysis
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• Compared with the background, the location of maximum warm core
is slightly higher as in the observations

• TWP values in the analysis were also increased.
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Impacts on Intensity Forecast
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• Three forecasts were made with the nonlinear RE model with initial
conditions with and without observations assimilated

• The 4D-Var VI experiment captures reasonably well the variation in
intensity during the 24-h period but not the control experiment

Forecast Time (hour)

M
SL

P 
(h

Pa
)



Potential Temperatures in 24-Hour Forecasts
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• Both experiments show well-defined hurricane warm core structures
• The warm core intensity from the control experiment is significantly

weaker than that from the 4D-Var VI experiment.
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Forecasts vs Observations
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• The overall structure of the potential temperature and intensities are
comparable to the observed ones.
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4D-Var VI S-NPP ATMS at 1621 UTC



LWP in 24-Hour Forecasts
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The 24-h forecast of LWP compared quite favorably with the retrievals
from AMSR2 measurements in maximum values near the storm center and
the decreasing rate of LWP along the radial distances.
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Typhoon Mangkhut
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The analysis time is 1450 UTC 9 September 2018, which was the time
when Typhoon Mangkhut started to intensify to its peak strength.



LWP in Forecasts
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The observations were available at 1454 UTC from NOAA-20 ATMS,
1521 UTC from AMSR2 and 1545 UTC from S-NPP ATMS on
September 9, 2018.
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Summary of 4D-Var VI

• The proposed 4D-Var VI system allows the retrievals from
satellite observations to be assimilated into a nonhydrostatic
axisymmetric numerical model

• Initial conditions obtained by the 4D-Var VI was well
adapted to the forecast model because of the constraint of
model dynamics

• The intensity forecasts in case of Hurricane Florence and
Typhoon Mangkhut are dramatically improved as well as
inner structures of the predictions

• Future efforts will be to incorporate the 4D-Var VI system
into realistic models for vortex initialization, such as the
MPAS-Atmosphere model


