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Trait-based models have improved the understanding and prediction of soil organic

matter dynamics in terrestrial ecosystems. Microscopic observations and pore scale

models are now increasingly used to quantify and elucidate the effects of soil

heterogeneity on microbial processes. Combining both approaches provides a promising

way to accurately capture spatial microbial-physicochemical interactions and to predict

overall system behavior. The present study aims to quantify controls on carbon (C)

turnover in soil due to the mm-scale spatial distribution of microbial decomposer

communities in soil. A new spatially explicit trait-based model (SpatC) has been

developed that captures the combined dynamics of microbes and soil organic matter

(SOM) by taking into account microbial life-history traits and SOM accessibility. Samples

of spatial distributions of microbes at µm-scale resolution were generated using a

spatial statistical model based on Log Gaussian Cox Processes which was originally

used to analyze distributions of bacterial cells in soil thin sections. These µm-scale

distribution patterns were then aggregated to derive distributions of microorganisms at

mm-scale. We performed Monte-Carlo simulations with microbial distributions that differ

in mm-scale spatial heterogeneity and functional community composition (oligotrophs,

copiotrophs, and copiotrophic cheaters). Our modeling approach revealed that the

spatial distribution of soil microorganisms triggers spatiotemporal patterns of C utilization

and microbial succession. Only strong spatial clustering of decomposer communities

induces a diffusion limitation of the substrate supply on the microhabitat scale,

which significantly reduces the total decomposition of C compounds and the overall

microbial growth. However, decomposer communities act as functionally redundant

microbial guilds with only slight changes in C utilization. The combined statistical and

process-based modeling approach derives distribution patterns of microorganisms at

the mm-scale from microbial biogeography at microhabitat scale (µm) and quantifies

the emergent macroscopic (cm) microbial and C dynamics. Thus, it effectively links

observable process dynamics to the spatial control by microbial communities. Our study

highlights a powerful approach that can provide further insights into the biological control

of soil organic matter turnover.

Keywords: microbial functional groups, trait-based model, microbial biogeography, upscaling, soil organic matter

cycling, log gaussian cox process point pattern
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INTRODUCTION

Microorganisms drive biochemical processes such as C cycling
in soil (Falkowski et al., 2008). There is growing consensus that
soil organic matter dynamics and stability are strongly controlled
by microbial processing and associated bioenergetics constraints
(Schmidt et al., 2011; Lehmann and Kleber, 2015; Williams and
Plante, 2018). Yet, understanding how microbial community
characteristics affect rates of biogeochemical processes remains
a major research challenge. Further progress to quantitatively
describe spatial arrangements between microorganisms in their
micro-environment and their corresponding substrate is needed
(Graham et al., 2016; Baveye et al., 2018).

Categorizing microbial communities based on life-
history strategies (e.g., copiotrophs/oligotrophs, r-/K-
stategists, autochtonous/zymogenous microorganisms, or
competitors/stress tolerators/ruderals) is useful to link microbial
community characteristics to biogeochemical processes (Fierer
et al., 2007; Kuzyakov et al., 2009; Martiny et al., 2015;
Fierer, 2017; Blankinship et al., 2018; Hall et al., 2018). These
frameworks are based on the transfer of macroscale ecology
concepts to microbial ecology. A recent study refined the
competitor-stress tolerator-ruderal concept from plant ecology
and suggested to define three microbial life history strategies:
resource acquisition, stress tolerance, and high yield (Malik
et al., 2020). Life-history strategies embrace combinations and
trade-offs of microbial community traits related to maximum
growth rate, dormancy, substrate affinity, production of specific
enzymes, or stress tolerance mechanisms (Webb et al., 2010;
Fierer et al., 2014; Trivedi et al., 2016; Alster et al., 2018; Rath
et al., 2019; Malik et al., 2020). Mineralization of soil C could
be seen as an emergent process that is regulated by functional
traits of soil microorganisms and microbiological interactions
(Addiscott, 2010). Therefore, decomposition of C compounds is
controlled by dynamics of assemblages of somewhat functionally
redundant organisms organized in microbial guilds with
characteristic life-history strategies (Schimel and Schaeffer,
2012).

Including measured functional traits of plants as well as soil
microorganisms and fauna in biogeochemical modeling is a
promising approach to improve predictions of biogeochemical
cycling in soil (Fry et al., 2019). Biogeochemical C models
increasingly include metabolic and physiological traits as well
as life-history strategies to account for microbial regulation
of decomposition processes (Garnier et al., 2001; Ingwersen
et al., 2008; Neill and Guenet, 2010; Allison, 2012; Bouskill
et al., 2012; Pagel et al., 2014, 2016; Perveen et al., 2014;
Wang et al., 2014; Le Roux et al., 2016). Including microbial
dormancy of microbes in models has been shown to improve the
prediction of soil organic C dynamics (He et al., 2015) as did
accounting for copiotrophic and oligotrophic microorganisms
as physiologically distinct functional groups (Wieder et al.,
2015). A model-based analysis demonstrated that adaptive
microbial responses to C limitation and water stress might
emerge frommicrobial traits related to dormancy and production
of extracellular polymeric substances (Brangarí et al., 2018).
The importance of community-level regulation and microbial
trait trade-offs was highlighted by trait-based modeling of

litter decomposition (Kaiser et al., 2015; Allison and Goulden,
2017).

Further integration of trait-based and spatial explicit
approaches is, however, essential to advance the quantitative
description of microbial C utilization, because microbial activity
is controlled by spatial characteristics. Physical accessibility
of organic compounds to microorganisms strongly affects
substrate supply and microbial community functioning (Brookes
et al., 2017; Nunan et al., 2017; Schimel, 2018). It has been
conjectured that at the pore-scale, which is relevant for microbial
processes, the supply of assimilable C (low molecular weight
compounds <600 Da) to microorganisms is mainly regulated by
(i) physical accessibility of soil organic matter, (ii) exoenzymatic
decomposition of C compounds that are not directly assimilable
(high molecular weight compounds≥ 600 Da), and (iii) diffusive
transport of assimilable C in the soil solution from locations of
exoenzymatic action to microbial cells (Lehmann and Kleber,
2015; Schimel et al., 2017; Blankinship et al., 2018; Sokol et al.,
2019).

Quantitative measurements of microbial distribution and
processes at the pore-scale are extremely challenging. Though
there is limited, albeit growing, experimental data on the
spatial organization and activity of microorganisms in soils, a
number of mechanistic models have been applied to understand
and predict the impact of spatial heterogeneity in soil on
microbial and physico-chemical processes (Baveye et al., 2018).
Raynaud and Nunan (2014) analyzed the spatial distribution
of bacterial cells in soil thin sections and described the spatial
structure of observed bacterial distributions as aggregated point
patterns using a Log Gaussian Cox process as spatial statistical
model. Their analysis indicated that distributions of bacterial
cells in soils are clustered and non-random at the µm-scale,
most probably as a result of heterogeneity in soil structure
and pore network architecture. Recent experimental evidence
from combined X-ray microtomography and fluorescence
microscopy at different sampled spatial scales (0.2, 1, 5mm)
indicates that pore characteristics might effectively influence
the distribution of bacteria in soil mainly at a spatial scale
of ∼5mm (Juyal et al., 2019). Most rapid decomposition
rates were associated with pores of neck diameters of 15–
90µm. This was attributed to optimal microbial habitat
conditions with respect to nutrient and oxygen supply and
organism motility (Strong et al., 2004; Kravchenko and
Guber, 2017). There is some experimental evidence that pore
characteristics and microenvironmental conditions control the
relative contributions of specific functional microbial groups
to decomposition of C compounds and the extent of their
functional redundancy (Ruamps et al., 2013; Negassa et al., 2015;
Kravchenko and Guber, 2017; Nunan et al., 2017).

A few recent models linked mechanistic descriptions of
a soil’s pore structure with trait-based microbial dynamics.
Experimental work using artificial micrometric pore networks
etched in glass combined with modeling has demonstrated
that oxygen-carbon counter-gradients (as commonly found in
microbial hotspots like the rhizosphere or detritusphere) induce
the spatial organization of aerobic and anaerobic bacteria and
promote their stable coexistence (Borer et al., 2018). Scenario
simulations using a multi-species 3D pore-scale soil C model
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FIGURE 1 | Conceptual scheme of coupled carbon turnover and biochemical interactions implemented in the 2D spatially explicit trait-based soil C model (SpatC).

Solid arrows indicate carbon fluxes. Dashed green arrows depict the controls on extracellular depolymerisation reactions. CM, CS, and CL stands for monomers, small

polymers, and large polymers, respectively. Superscript “S” indicates sorbed phase concentration of CM and CS. Monomers and small polymers may be transported

by 2D diffusion (not shown). Microbial communities consist of active (superscript “a”) and dormant (superscript “d”) oligotrophs (BO), copiotrophs (BC), and

copiotophic cheaters (BCC). P stands for predators.

have indicated microscale (µm) control of bacterial diversity
driven by the degree of heterogeneity in the spatial distribution
of organic matter (Portell et al., 2018). In these simulations, the
spatial heterogeneity of organic matter affected the succession of
functional bacterial types differing in growth rates and substrate
affinities. Irrespective of the spatial SOM distribution, however,
the small-scale (mm) C turnover was similar. This indicates
functional redundancy with respect to C cycling. While there are
some first successful attempts to derive mechanistic effective rate
laws for specific biogeochemical processes at pedon to landscape
scale from pore-scale modeling (e.g., Ebrahimi and Or, 2018;
Schmidt et al., 2018), the upscaling of microbial processes and
their control from pore scale to macroscopic scales (pedon to
landscape), which are practically relevant and accessible to direct
observation, remains a largely unresolved research challenge
(Baveye et al., 2018).

This theoretical study aims to elucidate the control of
emerging C dynamics in soil at the macroscale (cm) by the pore-
scale (µm) distribution of decomposer communities consisting
of microorganisms with differing life-history traits. A new
trait-based soil C model was utilized in combination with a
spatial statistical model of microbial biogeography (Raynaud
and Nunan, 2014) to test two hypotheses: (i) increasing spatial
heterogeneity in the distribution of microbial decomposers
results in an increase in diffusion-limited C availability and
lower C turnover and (ii) with increasing spatial heterogeneity,
the composition of decomposer communities shifts to a higher
proportion of oligotrophic organisms that can outcompete
copiotrophs at low C availability.

MATERIALS AND METHODS

Model Rationale and Main Assumptions
The 2D spatially explicit trait-based soil C model (SpatC) has
been developed to study the effects of mm-scale heterogeneous
distribution of functionally diverse microbial communities on
C cycling in soil. Following the conceptual soil continuum

model of soil organic matter cycling (Lehmann and Kleber,
2015), SpatC distinguishes three conceptual carbon pools with
respect to their assimilability by microorganisms (Figure 1).
Microbial communities are grouped into three functional
types that distinguish different life-history strategies according
to ecological categorizations, a technique used similarly in
other models (e.g., Allison, 2012; Kaiser et al., 2015). This
structure reflects fundamentally different life-history strategies
according to functional-ecological frameworks such as the
copiotrophy–oligotrophy continuum or Grime’s competitor–
stress tolerator–ruderal concept (Fierer et al., 2007; Krause
et al., 2014; Fierer, 2017; Ho et al., 2017; Huang et al., 2018;
Fry et al., 2019; Maynard et al., 2019). The biomass of all
microbial groups is regulated by growth of predators that
utilize microbial pools as C and energy sources. SpatC thereby
explicitly considers exploitative competition (interception of a
common resource), interference competition (direct interactions
between microorganisms), and predator-mediated competition
(top-down control of microorganisms by selective predation)
between the three functional microbial groups (see Buchkowski
et al., 2017).

Governing Equations and Fluxes
SpatC is formulated as a set of coupled partial and ordinary
differential equations. All C pools are based on the C mass
balance in soil and expressed in mg g−1. We assumed ∂CS

∂n = 0

and ∂CM
∂n = 0 at all boundaries (with n denoting the outward

facing normal vector), i.e., there was no flux of CS and CM

out of the considered domain. Model parameters are given in
Tables 1, 2. Fluxes and functions are specified in Section Fluxes
and Functions. A concise description of all model equations is
given in the Supplementary Material.

Non-microbial Carbon

Large biopolymers (CL, Equation 1) are not directly assimilable
by microorganisms, but need to be first depolymerized by
extracellular enzymes to dissolved small biopolymers (CS,

Frontiers in Environmental Science | www.frontiersin.org 3 January 2020 | Volume 8 | Article 2

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Pagel et al. SpatC—Spatial Control of Carbon Dynamics

Equation 2) and monomers (CM , Equation 3). Small biopolymers
are similarly prone to extracellular depolymerisation. This
enzymatic process is simulated using Michaelis-Menten
kinetics without explicitly considering enzyme dynamics.
The depolymerization rate of large and small polymers is
instead directly controlled by microbial biomass (Equation
21). Small polymers and monomers are directly consumed by
microorganisms. The decay of microorganisms and predators
leads to C input of non-microbial C to CL, CS, and CM . While
large biopolymers are not transported, SpatC accounts for
transport of small polymers and monomers by diffusion. Using
the approach of Streck et al. (1995), the bioavailability of CS and
CM is further constrained by rate-limited, two-stage, non-linear
sorption (Equations 4–6).

∂CL

∂t
= − rL

︸︷︷︸

depolymerization

+ fP,L ·
−→
1 ·

−→rP + fm,L ·
−→
1 ·

(
−→
rBm −

−→
rMm

)

+ rd,P
︸ ︷︷ ︸

decay of microorganisms and predators

(1)

∂CS

∂t
=

1

RS
︸︷︷︸

retardation
factor due to
equillibrium
sorption

·













input from CL
depolymerization

︷ ︸︸ ︷

fS · rL −

depolymerization
︷︸︸︷

rS −

microbial consumption for growth
︷ ︸︸ ︷

1

YS,O
· rSµ,O −

1

YS,C
·
(

rSµ,C + rSµ,CC
)

+

fP,S ·
−→
1 ·

−→rP + fm,S ·
−→
1 ·

(
−→
rBm −

−→
rMm

)

︸ ︷︷ ︸

microbial decay

−αS ·
(

CS,S1 − CS,S2
)

︸ ︷︷ ︸

kinetic sorption

+De,S · ∇
2CS

︸ ︷︷ ︸

diffusion













(2)

∂CM

∂t
=

1

RM
︸︷︷︸

retardation
factor due to
equillibrium
sorption

·













input from CLand CS
depolymerization
︷ ︸︸ ︷
(

1− fS
)

· rL + rS −

microbial consumption for growth and maintenance
︷ ︸︸ ︷

1

YM,O
· rMµ,O −

1

YM,C
·
(

rMµ,C + rMµ,CC
)

−
−→
1 ·

−→
rMm +

fP,M ·
−→
1 ·

−→rP + fm,M ·
−→
1 ·

(
−→
rBm −

−→
rMm

)

︸ ︷︷ ︸

microbial decay

−αM ·
(

CM,S1 − CM,S2
)

︸ ︷︷ ︸

kinetic sorption

+De,M · ∇2CM
︸ ︷︷ ︸

diffusion













(3)

Equilibrium sorption is considered using a Freundlich isotherm.
Sorbed phase concentrations of small biopolymers and
monomers at sorption sites in region 1 are accordingly
expressed as:

CS,S1 = KF,S ·
(ρB

θ
· CS

)mS

CM,S1 = KF,M ·
(ρB

θ
· CM

)mM
(4)

Kinetic sorption is expressed as mass transfer between sorption
sites in region 1 and region 2:

∂CS,S2

∂t
=

1

1− fS,S
· αS ·

(

CS,S1 − CS,S2
)

∂CM,S2

∂t
=

αM

1− fM,S
·
(

CM,S1 − CM,S2
)

(5)

Total sorbed phase concentrations are given by the sum of sorbed
phase concentrations in region 1 and 2, each weighted by the
fraction of sorption sites in both regions:.

CS
S =

fraction of
region 1 sites
for small
biopolymers
︷︸︸︷

fS,S ·CS,S1 +

fraction of
region 2 sites
for small
biopolymers
︷ ︸︸ ︷
(

1− fS,S
)

·CS,S2

CS
M = fM,S

︸︷︷︸

fraction of
region 1 sites
for monomers

·CM,S1 +
(

1− fM,S

)

︸ ︷︷ ︸

fraction of
region 2 sites
for monomers

·CM,S2

(6)

Functional Microbial Groups

SpatC accounts for three functional microbial types: oligotrophs
(BO), copiotrophs (BC) and copiotrophic cheaters (BCC)
(Equations 7–11). All microbial groups are considered to be able

to switch from an active to a dormant physiological state (Lennon
and Jones, 2011; Blagodatskaya and Kuzyakov, 2013; Joergensen
andWichern, 2018) with different parameterizations for different
functional types (Table 1, Figure 2). Active microorganisms use
dissolved small biopolymers and monomers for growth, while
dormant microorganisms do not grow. Maintenance energy
requirements of microorganisms are assumed to be fulfilled
through the uptake of monomers at sufficient substrate supply
and are met from biomass when monomers become limiting
(Wang and Post, 2012). That is, microorganisms switch from
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TABLE 1 | Parameterization of functional microbial traits.

Parameter Interpretation Functional group (i) Units

O C CC

GROWTH

µmax,i
# Maximum growth rate

coefficient

0.1 2 10 d−1

ki,S
# Specific substrate affinity

to small polymers

10 1 0.5 g mg−1 d−1

ki,M
# Specific substrate affinity

to monomers

50 20 10 g mg−1 d−1

YS,i* Growth yield on small

polymers

0.2 0.2 0.2 1

YM,i* Growth yield on

monomers

0.6 0.3 0.3 1

MAINTENANCE

mmax,i
# Maximum maintenance

rate coefficient

0.02 0.1 0.05 d−1

Ym* Maintenance yield 0.2 0.2 0.2 1

βi
$ Reduction factor of

maintenance

requirements in dormant

state

0.1 0.001 0.001 1

DORMANCY

kd,i
$ Deactivation rate

coefficient

0.1 1 5 d−1

kr,i
$ Reactivation rate

coefficient

0.1 0.1 5 d−1

Cthres,i
$ Monomer threshold

concentration for

deactivation and

reactivation

0.001 0.01 0.001 mg g−1

#According to ranges estimated by Pagel et al. (2016).
*Based on reported ranges of carbon use efficiencies (Manzoni et al., 2012, 2018; Geyer

et al., 2019). Low maintenance yields are assumed to reflect that maintenance-induced

microbial decay only partly covers the maintenance requirements.
$Based on Stolpovsky et al. (2011, 2016) and Mellage et al. (2015).

exogenous to endogenous maintenance (see Equation 18) leading
to microbial decay at low substrate availability. We consider that
endogenous maintenance proportionally results in the formation
of dead microbial biomass and CO2 (Equations 1–3 and
14). Additionally, microbial biomass decays due to predation.
Thereby, microbial C is used for growth of predators (Equation
13), reallocated to non-microbial C pools in soil (Equations 1–3)
and lost to CO2 (Equation 14).

Dynamics of active microorganisms are expressed as follows:

∂BaO
∂t

= rSµ,O + rMµ,O
︸ ︷︷ ︸

growth

− rd,O + rr,O
︸ ︷︷ ︸

deactivation + reactivation

−
1

Ym
·
(

ra,Bm,O − ra,Mm,O

)

︸ ︷︷ ︸

microbial decay
due to maintenance

−
1

YP

· (1− fP) · r
a
P,O − fP · r

a
P,O

︸ ︷︷ ︸

microbial decay by predation

(7)

TABLE 2 | Inhibition, maintenance, and non-microbial parameters and initial

values of SpatC model simulations.

Parameter Value Units Interpretation

INHIBITION AND MAINTENANCE

kI
# 1 g mg−1 (soil

C−1) d−1

Inhibition coefficient of active

copiotrophs on oligotrophs and

copiotrophic cheaters

fm,L* 0.6 1 Proportion of large polymers

formed from dead microbial

biomass due to maintenance

fm,S* 0.3 1 Proportion of small polymers

formed from dead microbial

biomass due to maintenance

fm,M* 0.1 1 Proportion of monomers formed

from dead microbial biomass

due to maintenance

ENZYME KINETICS

vmax,L
$ 0.01 d−1 Maximum reaction rate of

enzymes targeting large

polymers

vmax,S
$ 10 d−1 Maximum reaction rate of

enzymes targeting small

polymers

KL
$ 10 mg g−1 (C

soil−1)

Half-saturation coefficients of

enzymes targeting large

polymers

KS
$ 1 mg g−1 (C

soil−1)

Half-saturation coefficients of

enzymes targeting small

polymers

fS* 0.2 1 Proportion of small polymers

produced from enzymatic

decomposition of large polymers

PREDATION

kP,O
+ 0.1 d−1 Maximum predation rate on

oligotrophs

kP,C
+ 0.5 d−1 Maximum predation rate on

copiotrophs

kP,CC
+ 0.5 d−1 Maximum predation rate on

copiotrophic cheaters

kP
+ 5 × 10−6 d−1 Decay rate coefficient of

predators

γO* 0.05 1 Reduction factor of predation on

dormant oligotrophs

γC* 0.2 1 Reduction factor of predation on

dormant copiotrophs

γCC* 0.2 1 Reduction factor of predation on

dormant copiotrophic cheaters

fP,L* 0.15 1 Proportion of released microbial

biomass transferred to large

polymers by predation

fP,S* 0.12 1 Proportion of released microbial

biomass transferred to small

polymers by predation

(Continued)
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TABLE 2 | Continued

Parameter Value Units Interpretation

fP,M* 0.03 1 Proportion of released microbial

biomass transferred to

monomers by predation

YP
+ 0.2 1 Growth yield of predators

SORPTION§

KF,S 5 mlmSg−mS Freundlich sorption coefficient of

small polymers

KF,M 0.5 mlmMg−mM Freundlich sorption coefficient of

monomers

mS 0.7 1 Freundlich sorption exponent of

small polymers

mM 0.4 1 Freundlich sorption exponent of

monomers

αS 0.05 d−1 Rate coefficient of small polymer

mass transfer between the

sorbent regions

αM 1 d−1 Rate coefficient of monomer

mass transfer between the

sorbent regions

fS,S 0.5 1 Fraction of small polymer region

1 sorption sites

fM,S 0.9 1 Fraction of monomer region 1

sorption sites

TRANSPORT AND SOIL CHARACTERISTICS&

DS 10 mm2 d−1 Diffusion coefficient of small

polymers in water

DM 50 mm2 d−1 Diffusion coefficient of

monomers in water

ρB 1.2 g cm−3 Bulk density of soil

ρS 2.65 g cm−3 Density of solid phase

θ 0.3 1 Volumetric water content

INITIAL CONCENTRATIONS OF CARBON POOLS

CL (t = 0) 10 mg g−1 (C

soil−1)

Initial concentration of large

polymers

CS (t = 0) 0.1 mg g−1 (C

soil−1)

Initial concentration of small

polymers

CM (t = 0) 0.01 mg g−1 (C

soil−1)

Initial concentration of monomers

P (t = 0)+ 1 × 10−5 mg g−1 (C

soil−1)

Initial concentration of predators

#Fixed to a value that ensures significant inhibition at high abundances of copiotrophs

(based on preliminary model runs).
*No data available, based on logical consideration about the composition

of microorganisms.
$Coefficients of Michaelis-Menten kinetics were set based on ranges given in (Wang et al.,

2013; Sinsabaugh et al., 2014).
+Predation parameters are poorly constrained, values were set based on reported ranges

(Coleman et al., 2017, p. 218; Komarov et al., 2017), initial values were set to lower limits

of experimental estimates of soil faunal C budgets (Pausch et al., 2018).
§Values of sorption parameters were based on sorption characteristics of small polymers

and monomers (Kaiser and Zech, 1997; Vandenbruwane et al., 2007; Fischer et al., 2010;

Oren and Chefetz, 2012; Pagel et al., 2014, 2016).
&Pagel et al. (2014, 2016).

∂BaC
∂t

= rSµ,C + rMµ,C
︸ ︷︷ ︸

growth

− rd,C + rr,C
︸ ︷︷ ︸

deactivation + reactivation

(8)

−
1

Ym
·
(

ra,Bm,C − ra,Mm,C

)

︸ ︷︷ ︸

microbial decay
due to maintenance

−
1

YP

· (1− fP) · r
a
P,C − fP · r

a
P,C

︸ ︷︷ ︸

microbial decay by predation

∂BaCC
∂t

= rSµ,CC + rMµ,CC
︸ ︷︷ ︸

growth

− rd,CC + rr,CC
︸ ︷︷ ︸

deactivation + reactivation

−
1

Ym
·
(

ra,Bm,CC − ra,Mm,CC

)

︸ ︷︷ ︸

microbial decay
due to maintenance

−
1

YP

· (1− fP) · r
a
P,CC − fP · r

a
P,CC

︸ ︷︷ ︸

microbial decay by predation

(9)

Dynamics of dormant microorganisms are given by:

∂BdO
∂t

= rd,O − rr,O
︸ ︷︷ ︸

deactivation - reactivation

−
1

Ym
·
(

rd,Bm,O − rd,Mm,O

)

︸ ︷︷ ︸

maintenance

−
1

YP

· (1− fP) · r
d
P,O − fP · r

d
P,O

︸ ︷︷ ︸

microbial decay by predation

(10)

∂BdC
∂t

= rd,C − rr,C
︸ ︷︷ ︸

deactivation - reactivation

−
1

Ym
·
(

rd,Bm,C − rd,Mm,C

)

︸ ︷︷ ︸

maintenance

−
1

YP

· (1− fP) · r
d
P,C − fP · r

d
P,C

︸ ︷︷ ︸

microbial decay by predation

(11)

∂BdCC
∂t

= rd,CC − rr,CC
︸ ︷︷ ︸

deactivation - reactivation

−
1

Ym
·
(

rd,Bm,CC − rd,Mm,CC

)

︸ ︷︷ ︸

maintenance

−
1

YP

· (1− fP) · r
d
P,CC − fP · r

d
P,CC

︸ ︷︷ ︸

microbial decay by predation

(12)

Dynamics of predators are modeled using first-order growth and
decay. It is considered that only part of the killed microbial
biomass is actually taken up by predators. A fraction of C from
killed microorganisms (fP, Equation 20) is directly released to the
soil solution and reallocated to non-microbial soil pools:

∂P

∂t
= (1− fP) ·

−→
1 ·

−→rP
︸ ︷︷ ︸

growth

− rd,P
︸︷︷︸

decay

(13)
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FIGURE 2 | Schematic illustration of trade-off in functional microbial traits as implemented in SpatC (see also Table 1).

Formation of carbon dioxide (CO2) results from energy
metabolism by aerobic respiration during microbial growth and
maintenance as well as growth of predators:

∂CO2

∂t
=

microbial growth respiration
︷ ︸︸ ︷

1− YS,O

YS,O
· rSµ,O +

1− YM,O

YM,O
· rMµ,O +

1− YS,C

YS,C
·
(

rSµ,C + rSµ,CC
)

+
1− YM,C

YM,C
·
(

rMµ,C + rMµ,CC
)

+

1− Ym

Ym
·
−→
1 ·

(
−→
rBm −

−→
rMm

)

+
−→
1 ·

−→
rMm

︸ ︷︷ ︸

microbial maintenance respiration

+
1− YP

YP

·
(

1− fP
)

·
−→
1 ·

−→rP
︸ ︷︷ ︸

growth respiration of predators

(14)

Fluxes and Functions
The following flux equations define the C flows between soil
organic matter pools and soil biota. All fluxes are expressed
in mg g−1d−1.

Predation and maintenance fluxes were combined into
column vectors. These were then used in the governing equations
(Equations 1–14) as a scalar product with a row vector of ones for
an effective description of the model:

−→rP =











raP,O
rdP,O
raP,C
rdP,C
raP,CC
rdP,CC











−→
rMm =












ra,Mm,O

rd,Mm,O
ra,Mm,C

rd,Mm,C
ra,Mm,CC

rd,Mm,CC












−→
rBm =












ra,Bm,O

rd,Bm,O
ra,Bm,C

rd,Bm,C
ra,Bm,CC

rd,Bm,CC












−→
1 = (1, 1, 1, 1, 1, 1)

A multi-substrate Monod kinetic (Lendenmann and Egli, 1998)
is used to simulate grow of functional microbial types on
small polymers and monomers (Equation 15). Following the

proposed application of Grime’s competitor–stress tolerator–
ruderal concept to soil bacterial heterotrophs (Fierer, 2017),
copiotrophs are parameterized as competitors. They are assumed

to be most competitive by inhibiting the growth of oligotrophs
and copitrophic cheaters. This is implemented using a first-order
inhibition term (Buchkowski et al., 2017):

rSµ,O =
µmax,O · CS · kO,S

µmax,O + CS · kO,S + CM · kO,M
· BaO

︸ ︷︷ ︸

growth on small polymers

− kI · B
a
C · BaO

︸ ︷︷ ︸

inhibition by
copiotrophs

rMµ,O =
µmax,O · CM · kO,M

µmax,O + CS · kO,S + CM · kO,M
· BaO

︸ ︷︷ ︸

growth on monomers

− kI · B
a
C · BaO

︸ ︷︷ ︸

inhibition by
copiotrophs

rSµ,C =
µmax,C · CS · kC,S

µmax,C + CS · kC,S + CM · kC,M
· BaC

rMµ,C =
µmax,C · CM · kC,M

µmax,C + CS · kC,S + CM · kC,M
· BaC

rSµ,CC =
µmax,CC · CS · kCC,S

µmax,CC + CS · kCC,S + CM · kCC,M
· BaCC

−kI · B
a
C · BaCC

rMµ,CC =
µmax,CC · CM · kCC,M

µmax,CC + CS · kCC,S + CM · kCC,M
· BaCC

−kI · B
a
C · BaCC

(15)
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Switching between dormant and active state was modeled as
first-order process (Equation 16) based on the approach of
Mellage et al. (2015). Deactivation and reactivation rates are
triggered by the concentration of dissolved monomers using a
switching function (Equation 17). This function approaches zero
if the monomer concentration is below a trait-specific threshold
value and takes a value of one above the threshold. The shape
parameter α controls the sharpness of the transition. It was fixed
to a value of 0.1 to reflect a relatively sharp switching from and
to dormancy.

rd,O = (1− φO) · kd,O · BaO
︸ ︷︷ ︸

Deactivation

rr,O = φO · kr,O · BdO
︸ ︷︷ ︸

Re activation
rd,C = (1− φC) · kd,C · BaC

rr,C = φC · kr,C · BdC
rd,CC = (1− φCC) · kd,CC · BaCC

rr,CC = φCC · kr,CC · BdCC

(16)

φO =
1

e

C
thres,O−CM
α·C

thres,O + 1

φC =
1

e

C
thres,C−CM
α·C

thres,C + 1

φCC =
1

e

C
thres,CC−CM
α·C

thres,CC + 1
with α = 0.1

(17)

Total required maintenance uptake is given by the product of
the trait-specific maximum maintenance rate coefficient and
microbial biomass. Reduced maintenance needs of dormant
microorganisms are considered using a reduction factor (β)
of maximum maintenance rate coefficients. The relative C flux
needed for maintenance that can be fulfilled from dissolved
monomers (exogenous maintenance) is calculated using a
Michealis-Menten type rate law (Lendenmann and Egli, 1998).

ra,Bm,O =

Total C-flux required
to fulfill maintenance needs

︷ ︸︸ ︷

mmax,O · BaO

ra,Mm,O =

Proportional C-flux
of exogenous maintenance

︷ ︸︸ ︷
(

mmax,O · CM · kO,M
mmax,O + CM · kO,M

)

· BaO

rd,Bm,O = mmax,O · βO · BdO rd,Mm,O

=

(

mmax,O · CM · kO,M
mmax,O + CM · kO,M

)

· βO · BdO

ra,Bm,C = mmax,C · BaC ra,Mm,C =

(

mmax,C · CM · kC
mmax,C + CM · kC

)

· BaC

rd,Bm,C = mmax,C · βC · BdC

|rd,Mm,C =

(

mmax,C · CM · kC
mmax,C + CM · kC

)

· βC · BdC

ra,Bm,CC = mmax,CC · BaCC ra,Mm,CC

=

(

mmax,CC · CM · kCC
mmax,CC + CM · kCC

)

· BaCC

rd,Bm,CC = mmax,CC · βCC · BdCC rd,Mm,CC

=

(

mmax,CC · CM · kCC
mmax,CC + CM · kCC

)

· βCC · BdCC

(18)

Predation of microorganisms and the associated growth of
predators as well as the decay of predators is reflected
by first-order expressions. Decreased predation of dormant
microorganisms is considered by reduction factors (γ ) of
predation rate coefficients:

raP,O = kP,O · P · BaO

rdP,O = kP,O · γO · P · BdO
raP,C = kP,C · P · BaC

rdP,C = kP,C · γC · P · BdC
raP,CC = kP,CC · P · BaCC

rdP,CC = kP,CC · γCC · P · BdCC
rd,P = kP · P

(19)

The proportion of C lost to non-microbial C pools by predation
is given by:

fP = fP,L + fP,S + fP,M (20)

Enzymatic breakdown of large and small biopolymers is modeled
using Michaelis-Menten kinetics. Oligotrophs control the
depolymerisation of large and small polymers, while copiotrophs
only affect the depolymerisation of small polymers (Equation 21).
This was done to implicitly reflect a higher metabolic versatility
of oligotrops than copiotrophs. Copiotrophic cheaters fully rely
on the direct uptake of small polymers and monomers and do
not affect extracellular depolymerization of polymers:

rL = vmax,L ·
CL

KL + CL
· BaO

rS = vmax,S ·
CS

KS + CS
·
(

BaO + BaC
)

(21)

Retardation factors of dissolved small polymers and monomers
to consider non-linear equilibrium sorption are calculated as
follows (see Jury and Horton, 2004):

RS = 1+ fS,S · KF,S ·mS ·
(ρB

θ

)mS
· CS

(mS−1)

RM = 1+ fM,S · KF,M ·mM ·
(ρB

θ

)mM
· CM

(mM−1)

(22)

Effective diffusion coefficients of small polymers and monomers
in soil are derived from corresponding aqueous diffusion
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coefficients by accounting for unsaturated porous media
permeability (after Millington and Quirk, 1961):

De,S =

Correction term to account
for unsaturated permeability

︷ ︸︸ ︷

θ

7

3
(

1−
ρB

ρS

)2 ·

aquaeus
diffusion
coefficient
︷︸︸︷

DS

De,M =
θ

7

3
(

1−
ρB

ρS

)2 · DM

(23)

Parameterization
Parameters of SpatC and default values used in all simulations
are given in Tables 1, 2. We used uniformly distributed initial
concentrations of SOM pools and predators. Parameter values
were derived from available data if possible and based on logical
consideration elsewhere. All microorganisms were assumed to
be initially in a dormant state, i.e., initial values of active
microorganisms were set to zero. We set a low initial abundance
of dormant microbial biomass in the order of 10−4 mg g−1 (C
soil−1) to assure the detection of emerging behavior of microbial
groups due to growth in the simulation. Uniform initial SOM
pools and a homogeneous medium with isotropic transport and
sorption properties were assumed in order to clearly derive
effects of spatial distribution of functional microbial groups on
C dynamics. Spatial heterogeneity was restricted to microbial
distributions. Diffusion coefficients (Table 2) were set to values
which reflect a highermolecular weight ofCS than ofCM (Worch,
1993; Hendry et al., 2003).

Parameter values of functional microbial groups were chosen
to reflect ecological trade-offs between growth, dormancy
and maintenance traits (Figure 2, Table 1). Oligotrophs were
parameterized as slowest growers with most efficient substrate
uptake and usage. In contrast, copiotrophic cheaters can grow
fastest, but are characterized by least efficient substrate uptake
and usage. Copiotrophs grow slower than cheaters and have
higher maintenance requirements, but are more competitive due
to their more efficient substrate uptake in combination with
their ability to depolymerize small polymers and inhibit other
microorganisms. Oligotrophs were considered to stay active
at low substrate supply with lowest maintenance requirements
in active state, but highest in dormant state. Copiotrophic
cheaters can switch fastest from and to dormancy and switching
is triggered already at a low monomer threshold, i.e., they
respond fastest to monomer supply. Copiotrophs reactivate and
deactivate at a relatively high monomer threshold concentration,
but respond much more slowly to insufficient substrate supply
than copiotrophic cheaters.

Initialization and Scenario Simulations
Initial pool sizes of dormant functional microbial types were set
up in two steps based on a spatial statistical model of microbial
biogeography. A LogGaussian Cox process (LGCP) (Moller et al.,

1998) was used as a spatial stochastic model to generate point
patterns of microbial cells in a 100 × 100 mm2 soil domain.
The LGCP model is characterized by three parameters; the
mean (µ), the variance (σ2), and the scale (β) of the Gaussian
random measure. Following Raynaud and Nunan (2014), an
isotropic exponential covariance function C(r) = σ 2e−r/β with
distance variable r was used to model the Gaussian process.
All parameters were related to the µm-scale. The mean initial
density of microbial cells was set to 20 cells mm−2 (close to the
lower limit observed by Raynaud and Nunan, 2014; and Juyal
et al., 2019). This is equivalent to an average intensity of the

LGCP λ = eµ+
σ2
2 = 20 × 10−6 points µm−2. The spatial

heterogeneity of microbial cell distributions was determined by
σ2 values. Point patterns of increasing spatial heterogeneity and
clustering were simulated using four different σ2 values: 0.1, 0.5,
2, 6. Corresponding µ values were calculated as µ = ln (λ) −
σ 2

2 to: −10.82, −10.94, −12.82, −28.82. The scale parameter β

was fixed to 25µm in all simulations corresponding to average
estimates of Raynaud and Nunan (2014).

The generated point patterns of total microbial cells were
then aggregated to 1 mm2 resolution by discretizing the 100 ×

100 mm2 soil domain into 10,000 squares of 1 mm2. The total
number of cells at 1 mm2 resolution was then randomly split
into three subsets to derive average cell densities (cells mm−2)
for the three functional microbial groups (BO, BC, BCC). Initial
pool sizes of dormant functional microbial types in mg g−1 (C
soil−1) were calculated from these cell densities by assuming
a soil bulk density (ρS) of 1.2 g cm−3, a bacterial cell mass of
10−11 mg (McMahon and Parnell, 2014), and a representative
layer thickness of 10−3 mm (see also Raynaud and Nunan, 2014).
Thus, the average total initial microbial biomass was 1.67× 10−4

mg g−1 (C soil−1).
In total, 400 simulations comprising 100 realizations per σ2

value were performed. All simulations were run for 100 days. This
simulation time was chosen as an adequate trade-off between
computational effort and process insight.

Technical Implementation
Simulations of the described LGCPs and the aggregation
of the generated point patterns were performed using the
package spatstat (Baddeley, 2015) and the statistical computing
environment R (R Core Team, 2018). The coupled system of
partial and ordinary differential equations was implemented and
solved using the multipurpose finite element code COMSOL
Multiphysics R© in combination with the COMSOL R© module
LiveLinkTM for MATLAB R©.

Continuous spatial distributions of all state variables were
discretized using finite elements. The computational mesh was
constructed by converting and refining a regular quadrilateral
mesh with 10,000 elements of 1mm edge length such that
every 1mm square is further discretized by 16 tetrahedral
elements (Supplementary Figure 1). As a result the 100 × 100
mm2 domain was represented by 160,000 tetrahedral finite
elements with an area of 62.5 µm2 each. The initial distribution
of microorganisms at 1 mm² resolution was mapped on the
finite element mesh using nearest-neighbor interpolation as
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implemented in COMSOL. Test simulations using finer and
coarser meshes showed that the chosenmesh resolution provided
accurate results at a reasonable computation time.

The equations were solved numerically using an adaptive
implicit time-stepping scheme with a backward differentiation
formula of varying order from 1 to 5. Newton’s method was
used to linearize the system of equations. A flexible generalized
minimum residual iterative method (Saad, 1993) was used in
combination with a geometric multigrid solver (Hackbusch,
1985) to solve the final system of linear equations. The multigrid
solver utilized successive over-relaxation for pre- and post-
smoothing and a parallel sparse direct method as coarse solver.
MATLAB R© was used to set the initial distribution patterns of
dormant functional microbial pools, to control the model runs
and for post-processing of simulation results.

The derived discrete initial pool sizes of functional microbial
groups at 1 mm2 resolution could not be directly used for
initializing the simulation, because strong differences between
individual 1 mm2 squares would have required a highly
resolved computational mesh for numerical accuracy. Therefore,
the initial discrete spatial bacterial distributions were slightly
smoothed by running a reduced version of the full model
that only simulated slight diffusion of bacterial cells. By
this procedure, sharp fronts were removed by an initializing
COMSOL model run. The resulting smooth bacterial density
fields were then used to initialize the functional microbial types
for running the actual SpatC COMSOL R© model.

We explored the effect of biokinetic parameterization by
varying some key biokinetic parameters within reasonable
bounds by running SpatC with one stochastic realization in a 1
× 10 mm2 soil domain (Supplementary Figures 2, 25–27).

RESULTS

Spatiotemporal Dynamics
Spatial clustering of initial microbial communities resulted in the
emergence of coupled spatial patterns of C pools and microbial
succession (Figure 3, see also Supplementary Figures 4–24

for spatial distributions of soil pools at all degrees of
heterogeneity). The spatial distribution of large polymers
(Supplementary Figures 6, 7), however, was largely unaffected
by microbial distribution. Largely homogenously distributed
initial microbial communities (σ2 = 0.1) led to a uniform decline
of monomers and small polymers. Strong spatial clustering (σ2

= 6) induced local depletion zones of small polymers and
zones of increased monomer concentrations after 20 and 40
days at spots of high abundance of microbial biomass (Figure 3,
Supplementary Figures 25, 26). Higher diffusive transport of
monomers compared to small polymers resulted in sharper
spatial concentration gradients of small polymers at certain
local spots.

Spatial clustering of initial microbial communities (σ2

= 6) led to distinct spots of high microbial abundance.
At these spots, also predators became highly abundant
(Supplementary Figure 24). The distribution of oligotrophs was
characterized by relatively large and more uniformly distributed
spots in comparison to the other microbial functional groups
(Figure 3). Spots of high abundant copiotrophs were most
segregated (Figure 3) and associated with low abundances of the
other two functional groups (Supplementary Figure 27). Thus,
copiotrophs outcompeted oligotrophs and copiotrophic cheaters
and their biomass increased until the end of the simulation
period. This pattern emerged as a direct consequence of the

FIGURE 3 | Microbial biogeography triggers the emergence of spatial patterns of carbon utilization and microbial succession. Each square exemplifies the spatial

distribution of C pools (left) and the fraction of microbial functional groups of the total microbial biomass (right) for low (σ2 = 0.1) and strong (σ2 = 6) initial spatial

clustering of microbial communities within a 100 × 100 mm2 soil domain for one stochastic realization.
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simulated interference competition of copiotrophs’ inhibition of
microbial growth.

Aggregated C Turnover
Heterogeneity in the initial distribution of microbial
communities affected aggregated C turnover in soil, but
microbial distribution triggered only slight changes in C
utilization (Figure 4). For all initial spatial distributions of
microorganisms (σ2 = 0.1, 0.5, 2, 6), decomposition of small
polymers coincided with microbial growth. The concentration
of large polymers remained close to the initial value of 10mg
g−1. As a result of microbial death, it showed only a slight
increase of <0.015mg g−1. Monomers showed a concentration
peak after about 50 days as a result of enzymatic breakdown
of small polymers triggered by the activity of copiotrophs
and oligotrophs. While the maximum monomer concentration
decreased from homogenous (σ2 = 0.1, 0.5) to heterogeneous (σ2

= 2, 6) microbial distributions, the monomer concentration peak
became broader with increasing spatial clustering. The variability
of all C pools increased with increasing spatial heterogeneity of
decomposer communities.

Moderate spatial clustering (σ2 = 2) led to fastest monomer
production, degradation of small polymers, and microbial
growth. Strong spatial clustering (σ2 = 6) resulted in
slowest decomposition of small polymers and monomers
in combination with the slowest increase in total microbial

biomass. As a consequence, final aggregated concentrations
of monomers and small polymers were higher and final
microbial biomass was lower at σ2 = 6 compared to the
other scenarios.

Microbial Succession
The aggregated SpatC simulation results revealed a characteristic
succession of microbial functional groups in response
to available substrates (Figure 5). Copiotrophic cheaters
reacted first, directly followed by copiotrophs. These two
functional groups simultaneously grew most rapidly on
the available monomers and small polymers. Copiotropic
cheaters were outcompeted by copiotrophs and oligotrophs as
monomers and small polymers became limiting. Copiotrophs
switched from active to dormant and maintained the
largest portion of their biomass in a dormant state at the
end of the simulation. In contrast, active oligotrophs and
copiotrophic cheaters showed net growth until the end of
the simulation.

The top-down control by predators played only a minor role.
While the median abundance of predators was only slightly
affected by microbial distribution, strong spatial clustering
of microorganisms resulted in relatively high variability in
simulated predator biomass (data not shown).

Moderate spatial clustering (σ2 = 2) promoted the growth
of copiotrophs and triggered the fastest growth response

FIGURE 4 | Microbial biogeography triggers only small changes in carbon utilization. Plots show C turnover dynamics (left) and final values (right) of dissolved

monomers and small polymers as well as total microbial biomass C in response to spatial heterogeneity of the initial distribution of microorganisms (σ2 = 0.1, 0.5, 2,

6). Values are aggregated over the 100 × 100 mm2 soil domain. Lines indicate the medians of 100 realizations and shaded areas show minimum and maximum

values (left). Violin plots (right) are scaled to the same width and show the relative distribution of final values. In the inserted box plots, horizontal lines indicate median

values, boxes show interquartile ranges (IQR) and whiskers reflect values within maximum 1.5 × IQR.
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FIGURE 5 | Microbial biogeography most strongly affects dynamics of fast-growing copiothrophs. Plots show the succession (left) and final values (right) of microbial

functional groups (total biomass) in response to spatial heterogeneity of the initial distribution of microorganisms (σ2 = 0.1, 0.5, 2, 6). Values are aggregated over the

100 × 100 mm2 soil domain. Lines indicate the medians of 100 realizations and shaded areas show minimum and maximum values (left). Violin plots (right) are scaled

to the same width and show the relative distribution of final values. In the inserted box plots, horizontal lines indicate median values, boxes show interquartile ranges

(IQR), and whiskers reflect values within maximum 1.5 × IQR.

of copiotrophic cheaters. Strong spatial clustering (σ2 = 6)
delayed and reduced growth for all microbial functional groups.
The variability of all microbial functional groups increased
proportional to the initial degree of spatial heterogeneity.
Copiotrophs showed the highest sensitivity to spatial
heterogeneity of their initial localization. This was evident
by the highest variability of the stochastic simulation output
compared to oligotrophic and copiotrophic cheaters (Figure 5).

Spatial clustering of microbial communities only slightly
affected the relative contribution of functional groups to total
biomass (Figure 6, first row). Oligotrophs clearly dominated
and were similarly competitive independent of spatial clustering.
While copiotrophs reached maximum contribution to total
biomass at moderate spatial clustering (σ2 = 2), copiotrophic
cheaters gained highest maximum contributions at low spatial
clustering (σ2 = 0.1, 0.5).

The relative contributions of microbial functional groups with
respect to dissolved monomer and small polymer concentrations
(Figure 6, second and third row) highlights that spatial clustering
of microorganisms differently affects the access of microbial
functional groups to substrate. Oligotrophs were relatively
more competitive at monomer concentrations >0.1mg g−1

with decreasing spatial clustering and at concentration of
small polymers <0.6mg g−1 with strong spatial clustering
(σ2 = 6). Copiotrophs benefited most from moderate spatial
clustering (σ2 = 2) with monomers >0.1mg g−1 and small
polymers <0.75mg g−1. Copiotrophic cheaters performed best
at low spatial clustering (σ2 = 0.1, 0.5), independent of
substrate concentration.

DISCUSSION

Simulation results indicate that low and moderate initial spatial
clustering of microbial decomposers exert some control over
the functional composition of microbial communities, whereas
the overall C turnover is only slightly affected. Oligotrophs,
copiotrophs, and copiotrophic cheaters predominantly act
as functionally redundant microbial guilds with respect to
decomposition of C compounds. This fits well with conceptual
view that C turnover is a “broad” soil process that is carried out by
phylogenetically diverse but functionally redundant organisms
(Schimel and Schaeffer, 2012; Nunan et al., 2017). Strong spatial
clustering of microbial communities, however, induces diffusion-
limited C availability at the microhabitat scale which translates
into lower decomposition of C compounds and microbial
growth at the cm scale. This finding corroborates previous
results indicating that the spatial separation of substrates and
decomposers can be compensated to a certain degree by shifts
in the functional composition of the microbial community
(Kaiser et al., 2015), but that if critical diffusion lengths are
reached, diffusive transport strongly controls C turnover at the
microhabitat scale (Folse and Allison, 2012; Manzoni et al., 2014;
Portell et al., 2018).

Oligotrophs are observed to be most competitive regardless
of spatial organization. Their competitive advantage results from
higher substrate affinities to small polymers and monomers
in combination with lower maintenance costs and predation
than copiotrophs and copiotrophic cheaters. Copiotrophic
cheaters successfully compete with oligotrophs for monomers
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FIGURE 6 | Spatial clustering of microbial decomposers limits activity and access to monomers by copiotrophic cheaters. Moderate clustering facilitates the access

to monomers of copiotrophs and their contribution to total biomass. The first row shows the contribution of microbial functional groups (active and dormant biomass)

to total microbial biomass with respect to time. The second and the third row show a phase-space plot of microbial functional group fractions against dissolved

monomers (second row) and dissolved small polymers (third row). Each model output is shown in response to the spatial heterogeneity of the initial distribution of

microorganisms (σ2 = 0.1, 0.5, 2, 6). Lines indicate medians of 100 realizations (aggregated over the 100 × 100 mm2 soil domain). Shaded areas (first row) show

minimum and maximum values.

and small polymers as long as substrate availability remains
high enough. They can only sustain relatively low total biomass
under unfavorable conditions by switching to dormancy.
Interestingly, our results suggest that moderate spatial
heterogeneity (σ2 = 2) is beneficial for copiotrophs. Moderate
spatial clustering induces the formation of large areas of high
monomer concentration by extracellular decomposition of small

polymers. Copiotrophs become active and grow rapidly under
relatively high concentrations of monomers while inhibiting
the growth of other microorganisms. Thus, relatively more
micro-environments of competitive advantage to copiotrophs
against oligotrophs and copiotrophic cheaters are created in
comparison to lower and higher spatial clustering. In addition,
copiotrophs sustain themselves under less beneficial conditions
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by quickly switching to a dormant state, which drastically reduces
maintenance costs and biomass decay by predation.

The simulated behavior of microbial functional groups
supports experimental evidence of the importance of metabolic
activation/deactivation strategies by microbial functional groups
for regulating C turnover in soil (Placella et al., 2012; Joergensen
and Wichern, 2018; Salazar et al., 2019). Our finding that
interactions between microbial functional groups are controlled
by the spatial localization of microorganisms is in agreement
with previous results from individual-based modeling (Allison,
2005; Kaiser et al., 2015; Portell et al., 2018). SpatC model
results, however, suggest a less severe impact of cheaters on
microbial functioning and C turnover. In addition, our approach
is able to considerably extend the total spatial dimension typically
covered by individual-basedmodeling approaches (Allison, 2005;
Folse and Allison, 2012; Kaiser et al., 2015) by several orders
of magnitude, from ≤1 mm2 to 100 cm2. The INDISIM-SOM
model (Banitz et al., 2015) is conceptually similar to SpatC
but adopts an individual-based approach. INDISIM-SOM-NL
simulates C and N dynamics in soil and splits the spatial
domain into 30 × 30 grid cells of 310µm, each containing
two functional groups of microorganisms: heterotrophs and
autotrophs. Despite assuming an individual-based approach,
the spatial extend of INDISIM-SOM-NL is similar to the
one covered in the present contribution. This is achieved by
using the “superindividual” formalism, which assumes fewer
individuals summarizing the properties and being representative
of larger ensembles of microorganisms. Nonetheless, compared
to INDISIM-SOM-NL, SpatC provides a higher temporal and
spatial resolution, and considers three functional types of
heterotrophic microorganisms.

SpatC scenario simulations provide predictions of the
emergent macroscopic (cm) microbial and C dynamics
resulting from small-scale (mm) distribution characteristics
of microbial functional decomposer communities. Microbial
biogeography at the microhabitat scale (µm) is thereby
considered by using a spatial stochastic model to derive
microbial distribution patterns at the µm-scale, which are
aggregated to mm-scale distributions of microbial communities.
The combination of statistical and process-based modeling
applied with SpatC provides an upscaling approach that
can consider feedbacks between microhabitats, microbial
communities and soil microbial and physical processes up to
the pedon scale. Hence, our study contributes to resolving
the challenge of upscaling microbial regulation mechanisms
from the microhabitat scale to larger scales relevant for soil
management and global environmental change (Baveye et al.,
2018). SpatC predictions of microbial and C dynamics are,
however, dependent on the assumed biokinetic rate laws at the
mm-scale, which have been shown to differ from rate laws at
µm-scale (Chakrawal et al., 2019; Wang and Allison, 2019).
Similarly, an exploratory analysis of SpatC revealed a very high
sensitivity of model dynamics to some key biokinetic parameters
that partly increased the observed mild effect of spatial
heterogeneity (Supplementary Figures 28–30). The maximum
growth rate of oligotrophs (µmax,O) strongly controlled the
coexistence of functional microbial pools independent of

spatial heterogeneity (Supplementary Figure 28). Higher
values of µmax,O resulted in the fast depletion of small
polymers and monomers and strongly reduced growth of
copiotrophs and copiotrophic cheaters. In contrast, increasing
depolymerisation rate coefficients of small polymers induced
dominant growth of copiotrophs in combination with stronger
effects of spatial distributions of microorganisms on microbial
and C dynamics (Supplementary Figure 28). Parameters
related to dormancy of oligotrophs and copiotrophic cheaters
had a minor impact on model results, only a very high
dormancy concentration threshold slightly affected dynamics
(Supplementary Figure 29). As expected, less maintenance
requirements of oligotrophs and less severe inhibition by
copiotrophs resulted in higher biomass of oligotrophs in
combination with faster and more complete degradation of small
polymers and monomers (Supplementary Figure 30), but the
effect of spatial heterogeneity did not significantly change.

The developed SpatC model considers the control of C
turnover by spatial heterogeneity of functional microbial groups.
However, SpatC currently simplifies the micro-scale distribution
of organic C, which probably has a strong impact on C dynamics
at larger scales. The simulated spatial patterns in organic matter
decomposition are in alignment with experimentally observed
patterns of extracellular enzyme activity (Kravchenko et al.,
2019). Experimental evidence further suggests that C turnover
is strongly determined by pore characteristics (Kravchenko and
Guber, 2017; Juyal et al., 2019) andmicrobial activity is highest in
pores between 10 and 300µm (Kravchenko et al., 2019). Thus, an
improved description of microbial C turnover could be gained by
integrating realistic descriptions of soil pore structure based on
X-ray computed tomography data (see e.g., Portell et al., 2018) in
combination with a meaningful correlation structure of substrate
and microbial group distribution using evidence-based spatial
statistical modeling. In addition, the representation of biological
community interactions remains limited. Crucial extensions
could include the explicit representation of enzyme dynamics
(Burns et al., 2013; Moyano et al., 2018; Wang and Allison,
2019) and the implementation specific fungal traits (Yang and
van Elsas, 2018). Similarly, microbial dispersal and chemotactic
behavior (Valdés-Parada et al., 2009; see e.g., Gharasoo et al.,
2014; Locey et al., 2017; König et al., 2018) should be included
in future. Other promising extensions are quorum sensing
(Williams et al., 2007; Melke et al., 2010; Mund et al., 2016;
McBride and Strickland, 2019; Schmidt et al., 2019) as regulator
of biological interactions, as well as to improve the modeling
of top-down control of microbial communities by predators
and viruses (Pratama and van Elsas, 2018; Thakur and Geisen,
2019). Extensions along these lines will provide further insights
into the biological controls on soil organic matter turnover by
generating model-based hypotheses that can be tested against
experimental evidence.

Soil organic matter formation is an emergent process. It
cannot be directly predicted from community composition,
but arises from non-linear feedbacks and interactions between
microbial community members. To understand and predict these
biogeochemical feedbacks it is crucial to combine microbial traits
with the spatial arrangements between microorganisms in their
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micro-environment and their corresponding substrate. A key
finding of our work is that the degree of spatial heterogeneity
of microbial communities may control the relative contribution
of functional microbial groups to biogeochemical processes
and the degree of functional redundancy within microbial
communities. Our simulation results suggest that metabolic
activation/deactivation strategies of microbial functional groups
may be a key control of C turnover in soil. These model-
based implications could be tested with targeted experiments that
enable spatially resolved measurements of microbial community
composition and C fluxes at the microhabitat scale by extending
existing approaches (e.g., Poll et al., 2006) and using novel
techniques such as flow cells (Krueger et al., 2018) in combination
with functional multilayered omics approaches (Jansson and
Hofmockel, 2018; Sergaki et al., 2018).
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