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3-D geomechanical model of the Southern California region: key structural elements

Elevation
lower crust

We have created a geomechanical
model of the Southern California,
with realistic structure featuring
surface topography, tectonic faults
and major structural boundaries

Earth crust is represented by 5
layers, assuming Coulomb-Mohr
yield function

The static stress state was
calculated assuming the gravity
load and horizontal tectonic
stresses

Simulation has been performed with
FLAC software



Model correction based on tectonic faults data and rock damage parameter (initial damage)

Left: Satellite image of the model region and fault lines from USGS dataset
Right: Distribution of damage parameter for upper crust layer 1

Proceeding from the upper layer, damage distributions are obtained for deeper layers via smoothing
We apply damage function as multiplicative factor to all geomecanical parameters over entire model domain 



Iterative model correction based on seismic data-derived rock damage parameter
(current damage)

Left: Elastic energy calculated from seismic magnitudes for a series of earthquakes (M>1) during 3-month interval, ComCat
dataset, log scale
Right: Distribution of cumulative (initial + current 3-month seismicity-caused) damage parameter for upper crust layer 2

Each model run (repeated every 15 days) involves model correction with damage function, evaluated for the previous 3-month period from 
seismic magnitudes data
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Strength parameter monitoring and simulation sequence

The model stress-strain state is updated
through a series of successive recalculations
in which the mechanical properties are
corrected based on available seismic catalog
data for a 3-month window. The cycle is
repeated every 1/2 month.

Thus, the current seismicity data serves as a
model input, where every new shock is
interpreted as crustal damage causing
redistribution of strain, accumulated elastic
energy and ultimate strength of the Earth
crust.

Every new stress distribution is converted into
a 3-D pattern of the D-parameter (the measure
of proximity of the earth’s material to the
ultimate strength) revealing the particular
areas having the higher chance for the future
earthquakes. This approach shows pretty high
success rate for the given time range.
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Concept of strength parameter increment monitoring
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We evaluate the stress variation in the 
model by making use of the strength 
parameter D, indicating how close the 
structure is to the ultimate strengthD
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Variation of stress-strain parameters in 2009-2012 and M 7.2 2010 Earthquake

(a) Shear deformation intensity maximum in layer 2 (3.5–10 km depth)
(b) Variation of the maximum value of parameter 𝐷



Anomalies of normalized strength parameter D, preceding earthquakes in 2009-2012

15 days prior to earthquake 3 days prior to earthquake 14 days prior to earthquake 6 days prior to earthquake 11 days prior to earthquake



M 7.2 Earthquake, 04 April, 2010

Temporal-spatial migration of the
strength parameter maximum (red
circles) around the epicenter (yellow
star) of M 7.2 04 July 2010
Earthquake during January-April
2010

Gray lines indicate major fault zones in
the area, characterized by elevated rock
damage
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-6 01/01/2010
-5 15/01/2010
-5 15/01/2010
-4 01/02/2010
-3 15/02/2010
-2 01/03/2010
-1 15/03/2010
0 01/04/2010
1 15/04/2010
2 01/05/2010



Ridgecrest earthquake, M 7.1, 05 July 2019 

(a) Model subdomain and Ridgecrest EQ 
epicenter

(b) Variation of the maximum value of 𝐷
over subdomain during Jan-Jul 2019
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Ridgecrest earthquake, M 7.1, 05 July 2019 
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Temporal-spatial migration of
the strength parameter
maximum (red circles) around
the epicenters (yellow stars) of
M 6.4 and M 7.2 Ridgecrest
earthquakes (04 and 05 July
2019 during January-July 2019

Gray regions indicate major fault
zones in the area, characterized by
elevated rock damage



Conclusions
Since 2009, the stress-strain state of the earth’s crust in South California region is

being tracked utilizing the geomechanical model accounting for all the current seismicity.
Every new earthquake is treated as a new defect in the Earth's crust, causing the stress-
strain state redistribution.

Through the continuous stress-strain state update, we found that all the significant
earthquakes in the area, including those with M ~ 7 in 2010 and 2019, had been preceded
by the anomalies in the strength parameter, located within 20 km from the epicenter of
the future seismic event.

Tracking the maximum of normalized D-parameter in each model layer reveals
its specific behavior (it tends to stay in the neighborhood of future epicenter) weeks before
the earthquake.

3D geomechanical models enables the geological, geophysical,and seismological
data to be jointly used for monitoring the stress state variations which occur during the
seismic process
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