

#### Expert elicitation as tool for climate and hydrological model uncertainty reduction

D2149 | EGU2020-13152

Hans Jørgen Henriksen, Ernesto Pasten-Zapata, Peter Berg, Rafael Pimentel, Guillaume Thirel, Andrea Lira-Loarca, Eva Sebök and Christiana Photiadou

#### Session:

SSS10.4 *Quantifying and communicating uncertain information in earth sciences* 



#### Chat time: Wednesday, 6 May 2020, 14:00-15:45





# **Highlights**

- An Expert Evaluation (EE workshop) procedure for uncertainty reduction has been developed in AQUACLEW (JPI-Climate).
- The elicitation can be compared to quantitative approaches
- Can good-performing models (climate- and hydrological-models) be differentiated from an ensemble of models?
- EE potential method for uncertainty reduction, in cases where a quantitative validation of the ensemble is not feasible.
- Training material for experts has been developed (7 selected climate models are included for 5 European AquaClew CS, 3 different hydro model structures are included for 3 of these)
- This presentation focuses on *introducing the training material and initial results* (virtual EE workshop settled for May-June 2020 using TEAMS/Business skype)
- A subset of the EURO-CORDEX EUR-11 ensemble of climate models are used
- Hydrological models skills to simulate the observations at the selected study sites are used





#### **Overview of selected CS's and models**

|         | Case study                             | Participating in EE? |           |  |  |  |  |
|---------|----------------------------------------|----------------------|-----------|--|--|--|--|
| Country | Key issues                             | Climate              | Hydrology |  |  |  |  |
| SE      | Water quality in lake                  | Yes                  | No        |  |  |  |  |
| DK      | Irrigation and drainage requirements   | Yes                  | Yes       |  |  |  |  |
| FR      | Hydropower                             | Yes                  | Yes       |  |  |  |  |
| ES-UCO  | Drought and water resources allocation | Yes                  | Yes       |  |  |  |  |
| ES-UGR  | Fluvial and coastal interactions       | Yes                  | No        |  |  |  |  |
|         |                                        | 5                    | 3         |  |  |  |  |





# **Overall idea with EE**

We want to end up assigning probabilities to models. We do this by asking experts to respond to two series of general and case specific questions:

- Block 1 Warm up. Appropriateness of the models in general as well as specifically to deal with the case study issues (including considerations on geographic region, simulation variable, etc.). Concludes with ranking of models.
- Block 2 Probabilities. Experts assign probabilities to the individual models of the ensemble for the specific case studies.

Same logic is used for climate and hydrological models, but the specific questions are different. Questions are send to experts before virtual EE workshop. Redone individually after presentations on CS, climate models and hydrological model results.

After individual elicitation of Block 2 probabilities, elicitation repeted in group mode.





#### Outline of the training document for experts

- 1) Case study
- 2) Location
- 3) Water-management issue
- 4) Relevance
- 5) Case study data
  - a. Map of the case study area
  - b. Climate
- i. Temperature (Time series and spatial distribution)
- ii. Precipitation (Time series and spatial distribution)
- iii. Other
- c. Hydrology
  - i. Rivers (Location and time series of the flow)
  - ii. Groundwater (Spatial distribution of the depth to GW)
- 6) Climate models
  - a. Climate model skill on pan-European scale
    - (same for all case studies)
- 7) Hydrological models
  - a. Models used and theory behind the models
  - b. Inputs and resolution
  - c. Outputs
  - d. Differential split sampling test



Project AQUACLEW is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462).

Material prepared by CSs and partners, follow same level of detail and structure

Low



# **Examples of Block 1**

To what degree does the GCM-RCM combination capture today's circulation and key teleconnection patterns?

|                | High       | Intermediate |
|----------------|------------|--------------|
| EC-Earth-CCLM  | $\bigcirc$ | $\bigcirc$   |
| EC-Earth-RACMO | $\bigcirc$ | $\bigcirc$   |
| EC-Earth-RCA4  | $\bigcirc$ | 0            |
| HadGEM-RACMO   | $\bigcirc$ | $\bigcirc$   |
| HadGEM-RCA4    | $\bigcirc$ | $\bigcirc$   |
| MPI-ESM-RCA4   | $\bigcirc$ | $\bigcirc$   |
| MPI-ESM-REMO   | $\bigcirc$ | $\bigcirc$   |
|                |            |              |

| Rank the 7 mode | els (with rai | nk 1 as the m | ost plausibl | e and rank 7 | as the least | plausible mo | odel) * |
|-----------------|---------------|---------------|--------------|--------------|--------------|--------------|---------|
|                 | 1             | 2             | 3            | 4            | 5            | 6            | 7       |
| EC-Earth-C      |               |               |              |              |              |              |         |
| EC-Earth-R      |               |               |              |              |              |              |         |
| EC-Earth-R      |               |               |              |              |              |              |         |
| HadGEM-R        |               |               |              |              |              |              |         |
| HadGEM-R        |               |               |              |              |              |              |         |
| MPI-ESM-R       |               |               |              |              |              |              |         |
| MPI-ESM-R       |               |               |              |              |              |              |         |





# **Examples of Block 2**

Table 1 Probability chart for eliciting model probabilities. The total probability of all climate models should be equal to 100% and several climate models can have the same probability value.

| Climate<br>model              | Case study 1 | Case study 2 | Case study 3 | Case study 4 | Case study 5 | Confidence in<br>general in<br>climate<br>models<br>(1: low - 5: high) |
|-------------------------------|--------------|--------------|--------------|--------------|--------------|------------------------------------------------------------------------|
| 1                             |              |              |              |              |              |                                                                        |
| 2                             |              |              |              |              |              |                                                                        |
| 3                             |              |              |              |              |              |                                                                        |
| 4                             |              |              |              |              |              |                                                                        |
| Ν                             |              |              |              |              |              |                                                                        |
| Total<br>probability          | 100%         | 100%         | 100%         | 100%         | 100%         |                                                                        |
| Confidence in                 |              |              |              |              |              |                                                                        |
| ranking<br>(1: low - 5: high) |              |              |              |              |              |                                                                        |





# **Examples of Block 2**

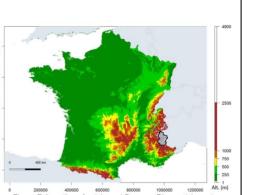
Table 2. Probability chart for eliciting model probabilities. The total probability of all hydrological models should be equal to 100% and several hydrological models can have the same probability value.

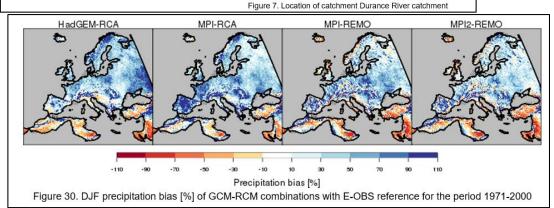
| Hydrological model                        | Case study DK | Case study-FR | Case study ES-UCO | Confidence in<br>general in<br>hydrological<br>models (1:low – 5<br>high) |
|-------------------------------------------|---------------|---------------|-------------------|---------------------------------------------------------------------------|
| 1                                         | Х             |               |                   |                                                                           |
| 2                                         | X             |               |                   |                                                                           |
| 3                                         | X             |               |                   |                                                                           |
| 4                                         |               | Х             |                   |                                                                           |
| 5                                         |               | Х             |                   |                                                                           |
| 6                                         |               | Х             |                   |                                                                           |
| 7                                         |               |               | X                 |                                                                           |
| 8                                         |               |               | Х                 |                                                                           |
| 9                                         |               |               | X                 |                                                                           |
| Total probability                         | 100 %         | 100 %         | 100 %             |                                                                           |
| Confidence in ranking<br>1: low – 5: high |               |               |                   |                                                                           |

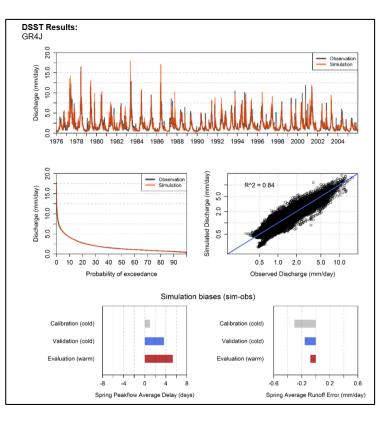




## **Example from training material**


#### 2.2. Hydropower production in France: Southern Alps


#### Water-management issue:


The hydropower sector is sensitive to climate variables, as these directly affect energy generation and consumption. Climate services provide key information to optimize reservoir operations for hydropower production and to manage water storage to meet the needs of other users (for instance, tourism, agriculture, environmental flows). They also provide guidelines for climate change adaptation and to build strategies that incorporate climate resilience into existing hydropower facilities and the development of new projects. With many climate services flourishing across Europe, the challenge today is to develop energy indicators based on these climate services, which can facilitate decision-making at the regional and local levels.

Study area:

The Durance catchment is predominantly snowy or glacio-nival. The drainage area of the catchment at Espinasses is 3580 km<sup>2</sup>. The basin is located at an elevation of 2020 m on average, with 25% of the surface above 2400 m. The Serre-Ponçon reservoir, located at the southwest of the catchment, is one of the most important in France for hydropower production, with a capacity of 1200 millions of cubic meters.









- Step 1: Define the main issues of elicitation
- Step 2: Select experts
- Step 3: Plan the elicitation
- Step 4: Training of the experts
- Step 5: Elicitation
- Step 6: Aggregation and analysis of results

### PROCESS

|                                              |        |   |   |   |         |   | 2 | 201 | .9 |   |         |         |         |        |         |   |     | 20  | )20 |   |   |   |
|----------------------------------------------|--------|---|---|---|---------|---|---|-----|----|---|---------|---------|---------|--------|---------|---|-----|-----|-----|---|---|---|
| Task                                         | 1<br>2 |   | 1 | 2 | 3       | 4 | 5 | 6   | 7  | 8 | 9       | 1<br>0  | 1<br>1  | 1<br>2 | 1 2     | 2 | 3 4 | 4 ! | 56  | 7 | 8 | g |
| Coordination                                 |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| Working Group skype                          |        | * |   |   | $\star$ |   |   | *   |    |   | $\star$ |         | $\star$ |        | $\star$ |   | ★   |     | 7   | * | * |   |
| AquaClew physical meetings                   |        |   |   |   |         | ★ |   |     |    |   |         | $\star$ |         |        |         |   |     | ★   |     |   |   | * |
| EE protocol                                  |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| Draft protocol                               |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| WG comments                                  |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| Final version ready                          |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| Experts for EE workshop                      |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| 2-page note with info for experts - draft    |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| WG comments                                  |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| Final version ready - formal invitation sent |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| to experts                                   |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| EE Workshop                                  |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| Planning (final version of experts,          |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| questions, program)                          |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| EE workshop                                  |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   | ۰.  |     |     |   |   |   |
| Documentation and analyses                   |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| Journal paper                                |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| First draft                                  |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |
| Final manuscript and submission              |        |   |   |   |         |   |   |     |    |   |         |         |         |        |         |   |     |     |     |   |   |   |

Meeting Activity





Week before workshop: Experts receive Questions (Block 1) and send in first individual elicitation

# Tentative Program for EE workshop 17 March 2020 in Paris

- 8:30-9:00 Coffee and introduction of experts and participants (who is who)
- 9:00-9:30 Introduction to EE workshop
- 9:30-10:00 Pecha Kucha presentation of each Case Study (CS participants)
- 10:00-10:30 Overview climate models
- 10:30-11:00 Overview hydrological models
- 11:30-12:30 Expert elicitation. Block 1 questions. Individual update of evaluation for all questions.
- 12:30-13:30 Lunch break
- 13:30-14:30 Expert elicitation. Block 2 probabilities. Individual assessment.
- 14:30-14:50 Coffee break
- 14:50-15:00 Presentation of results of EE
- 15:00-16:00 Group elicitation of Block 2 probabilities (both group attempt to find consensus for evaluation of climate models in case studies probabilities)
  - Climate model experts (group 1)
  - Hydrological model experts (group 2)
  - 16:00-16:30 Discussion of results

#### But then COVID-19 arrived!



|             | Climate modelling experts      | Link to AquaClew partner                                             |  |  |
|-------------|--------------------------------|----------------------------------------------------------------------|--|--|
| Overview of | SMHI/Rosby Centre              | External                                                             |  |  |
| selected    | University of Copenhagen       | External                                                             |  |  |
| experts     | INRAE                          | Partner organisation                                                 |  |  |
|             | Météo-France                   | External                                                             |  |  |
|             | BSC                            | External                                                             |  |  |
|             | University of Genova           | External                                                             |  |  |
|             |                                |                                                                      |  |  |
|             | Hydro modelling experts        | Link to AquaClew partner                                             |  |  |
|             | Hydro modelling experts<br>UCO | Link to AquaClew partner Partner organisation                        |  |  |
|             |                                |                                                                      |  |  |
|             | UCO                            | Partner organisation                                                 |  |  |
|             | UCO<br>GEUS                    | Partner organisation<br>Partner organisation                         |  |  |
|             | UCO<br>GEUS<br>SMHI            | Partner organisation<br>Partner organisation<br>Partner organisation |  |  |





## Initial results: Probabilities

| Hydrological<br>model                          | Case study<br>DK | Case study-<br>FR | Case study<br>ES-UCO | Confidence in<br>general in<br>hydrological models<br>(1:low – 5 high) |
|------------------------------------------------|------------------|-------------------|----------------------|------------------------------------------------------------------------|
| 1 Two Layer                                    | 50%              |                   |                      | 5                                                                      |
| 2 Gravity<br>flow                              | 15%              |                   |                      | 2                                                                      |
| 3 Richards<br>Equation                         | 35%              |                   |                      | 4                                                                      |
| 4 GR4J                                         |                  | 35%               |                      | 3                                                                      |
| 5 GR6J                                         |                  | 34%               |                      | 3                                                                      |
| 6 TOPMO                                        |                  | 31%               |                      | 3                                                                      |
| 7 HYPE                                         |                  |                   | 25%                  | 4                                                                      |
| 8 SWAT                                         |                  |                   | 15%                  | 4                                                                      |
| 9 WiMMed                                       |                  |                   | 60%                  | 5                                                                      |
| Total<br>probability                           | 100%             | 100%              | 100 %                |                                                                        |
| Confidence in<br>ranking (1: low<br>– 5: high) | 5                | 2                 | 5                    |                                                                        |

| Hydrological<br>model                          | Case study<br>DK | Case study-<br>FR | Case study<br>ES-UCO | Confidence in<br>general in<br>hydrological models<br>(1:low – 5 high) |
|------------------------------------------------|------------------|-------------------|----------------------|------------------------------------------------------------------------|
| 1 Two Layer                                    | 40               |                   |                      | 4                                                                      |
| 2 Gravity<br>flow                              | 30               |                   |                      | 3                                                                      |
| 3 Richards<br>Equation                         | 30               |                   |                      | 3                                                                      |
| 4 GR4J                                         |                  | 50                |                      | 5                                                                      |
| 5 GR6J                                         |                  | 25                |                      | 4                                                                      |
| 6 TOPMO                                        |                  | 25                |                      | 4                                                                      |
| 7 HYPE                                         |                  |                   | 15                   | 2                                                                      |
| 8 SWAT                                         |                  |                   | 40                   | 3                                                                      |
| 9 WiMMed                                       |                  |                   | 45                   | 3                                                                      |
| Total<br>probability                           | 100%             | 100%              | 100%                 |                                                                        |
| Confidence in<br>ranking (1: low<br>– 5: high) | 3                | 4                 | 4                    |                                                                        |

| Hydrological<br>model                          | Case study<br>DK | Case study-<br>FR | Case study<br>ES-UCO | Confidence in<br>general in<br>hydrological models<br>(1:low – 5 high) |
|------------------------------------------------|------------------|-------------------|----------------------|------------------------------------------------------------------------|
| 1 Two Layer                                    | 40               |                   |                      | 4                                                                      |
| 2 Gravity<br>flow                              | 20               |                   |                      | 3                                                                      |
| 3 Richards<br>Equation                         | 40               |                   |                      | 4                                                                      |
| 4 GR4J                                         |                  | 30                |                      | 4                                                                      |
| 5 GR6J                                         |                  | 30                |                      | 4                                                                      |
| 6 TOPMO                                        |                  | 40                |                      | 4                                                                      |
| 7 HYPE                                         |                  |                   | 0                    | 1                                                                      |
| 8 SWAT                                         |                  |                   | 50                   | 4                                                                      |
| 9 WiMMed                                       |                  |                   | 50                   | 4                                                                      |
| Total<br>probability                           | 100%             | 100%              | 100 %                |                                                                        |
| Confidence in<br>ranking (1: low<br>– 5: high) | 3                | 3                 | 2                    |                                                                        |





# Discussion

- Complexity to perform the online group meeting, involving all experts
- Strong 'feelings'  $\rightarrow$  is it possible to reach a consensus?
- Comparison against a quantitative approach, are results similar?
- 'There is no replacement for meeting in person', since we do the EE in a virtual meeting, will that work for individual and collective probability assessment?
- How can virtual EE workshops be designed and guided, in order to elicite substantive information from experts (individually as well as in groups)?

