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• Reactive flow is studied using analog model of network of cylindrical 

channels (Hoefner and Fogler, 1988; Roded et al., 2018)

The network model

• Solute concentrations and solid dissolved from 
solute conservation equations

• Fluid fluxes resolved from mass conservation of fluid

• Solute transport by advection and diffusion, and 
1st-order reaction
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• Positive feedback between reaction and transport

• Longer wormholes increase their flow on the expanse of shorter 
ones and screens them off

𝑁 𝐿𝑤 ~𝐿𝑤
−𝛼 𝑤ℎ𝑒𝑟𝑒 𝛼 ≈ 1

• Shared dynamics and patterns to other unstable growth 
processes, e.g. viscous fingering 

Wormhole competition

• Hierarchical scale-invariant distribution of wormhole 
lengths (Szymczak & Ladd, 2006)  
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• Anisotropy alter wormholing pattern and permeability 
evolution

Wormholing in anisotropic media

𝑆 =
𝑎𝑦
𝑎𝑥

• For large S, enhanced interaction via the pressure field 
results in stronger competition

Isotropic

Small transverse 
channels

Large transverse 
channels
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• For larger S the power-law distribution with α≈1 is kept, 
however not for S<1  

• Consistent with recent experiments of viscous fingering 
in a microfluidic networks (Budek et al., 2015)

Wormhole distribution

• Accordingly, spacing and aspect ratio scales linearly 
with S, Ac~S

• Here, while Ac increases with S it does not follow a 
linear trend but shows a fit to power-law, Ac~Sβ

𝐴𝑐 = 𝐿𝑦/𝐿𝑥
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• Smaller S associated with larger wormhole aspect ratio, 
Aw=Lw/b

• Smaller S and spacing lead to 
reactivity decay and conical 
wormholes

• For large S wormhole widen downstream as flow governs

• Aw tends to level-off 

Wormhole shape
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• Competing side-branches

• We use a simple system with a central preexisting channel

• For S=0.1 pressure perturbation induced by the channel, 
decays sharply in the transverse direction

• Promote sideways directed flow and development of 
branches

Low S conditions
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 Anisotropy alter wormholing pattern and permeability evolution, including:

i. Wormhole competition and the characteristic separation

ii. Wormhole shape and tendency to develop side-branches

 Findings are comparable with results of similar process– viscous fingering 

 However, while in viscous fingering for S≳1 spacing scales linearly with S, the 
increase is non-linear for wormholing

 This could be attributed to the effect of anisotropy on wormhole shape and 
advancement velocity, and remains the subject for future investigation

Conclusions
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