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The network model

* Reactive flow is studied using analog model of network of cylindrical
channels (Hoefner and Fogler, 1988; Roded et al., 2018)
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Solid surface

Outlet

* Fluid fluxes resolved from mass conservation of fluid

e Solute concentrations and solid dissolved from
solute conservation equations

* Solute transport by advection and diffusion, and
15t-order reaction




Wormhole competition

» Positive feedback between reaction and transport

* Longer wormholes increase their flow on the expanse of shorter
ones and screens them off

e Shared dynamics and patterns to other unstable growth
processes, e.g. viscous fingering
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Wormholing in anisotropic media

Large transverse
channels

Isotropic

* Anisotropy alter wormholing pattern and permeability
evolution

* For large S, enhanced interaction via the pressure field
results in stronger competition
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Wormhole distribution

* For larger S the power-law distribution with a=1 is kept,
however not for S<1

* Consistent with recent experiments of viscous fingering
in a microfluidic networks (Budek et al., 2015)
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Wormhole shape
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e For large S wormhole widen downstream as flow governs

* A, tends to level-off
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* Smaller S associated with larger wormhole aspect ratio,

A =L /b

* Smaller S and spacing lead to
reactivity decay and conical
wormholes

¢: L .

0 0.250.50.75 1

S =10




Low S conditions

e Competing side-branches

* We use a simple system with a central preexisting channel
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* For $=0.1 pressure perturbation induced by the channel,
decays sharply in the transverse direction

* Promote sideways directed flow and development of
branches




Conclusions

= Anisotropy alter wormholing pattern and permeability evolution, including:

i.  Wormhole competition and the characteristic separation

ii. Wormhole shape and tendency to develop side-branches

" Findings are comparable with results of similar process— viscous fingering

= However, while in viscous fingering for S=1 spacing scales linearly with S, the
increase is non-linear for wormholing

" This could be attributed to the effect of anisotropy on wormhole shape and
advancement velocity, and remains the subject for future investigation
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