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Accelerated electrons are widely observed in our universe, and turbulence is one of the 
ingredients to accelerate them to high energies

Motivation and highlight

Turbulence is one of the ingredients to accelerate (or re-accelerate) particles to high energies

We study the energisation of transrelativistic electrons (E0 ~ 400 eV) in turbulence, 
identifying the acceleration mechanisms at play

Depending on electron initial energy and turbulence strength, electrons may undergo 
a fast and efficient phase of energisation due to magnetic drift during trapping at 

turbulent structures



Results: Overview of particle trajectories

High turbulence strength

(a)
Brms/B0 = 0.06 Brms/B0 = 0.24

(b)

B
?
/B

0

(a)
Brms/B0 = 0.06 Brms/B0 = 0.24

(b)

B
?
/B

0

Low turbulence strength

u0 = 200 vA u0 = 200 vA

Method: 2.5D hybrid PIC simulations of turbulence + test-particle electrons

Open orbits - low energy gain, slow energisation (blue)

Trapped orbits - high energy gain, fast energisation, active at high 
turbulence strength (red)
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Results: fast acceleration, zoom

Brms/B0 = 0.24

High turbulence strength: presence of trapped 
trajectories associated with large energy gains

Energisation mechanism resemblant of processes 
seen in simulations of magnetic reconnection 
(e.g., Drake+2006, Dahlin+2016, Li+2019)

Red: trapped portion of trajectory

Fast energisation proceeds once electrons 
detrap, then pitch-angle scattering dominates 
(erasing the memory of the process, see (b)).

Fast energisation is manifested as a strong 
increase of perpendicular energy due to particle 

drifts
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Results: mean electron energisation

Low turbulence strength: slow energisation, 
moderate gain
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High turbulence strength: energisation 
proceeds in stages, large energy gains

Brms/B0 = 0.24

The behaviour observed is dependent on the 
initial electron energy. If initial electron 

energy is increased over 800 vA, the rapid 
acceleration regime is almost absent

Energisation due to trapping at magnetic 
structures is efficient only for certain combinations 

of turbulence strength and electron energy



Results: electron energy spectra

Low turbulence strength: maximum energy gains 
small. Spectra compatible with analytical prediction.

Electron energy spectra from the simulations 
(colours) are analysed and compared with 

analytical prediction involving only second-order 
Fermi acceleration mechanism by Becker+2006 

(black)

High turbulence strength: large maximum energy 
gains. Spectrum flattening at intermediate 

energies. No qualitative agreement with analytical 
prediction
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No sign of anisotropies in electrons VDFs are 
found. These results can be put in context of 

acceleration at contracting islands in the presence 
of strong scattering (leRoux+2016)



Results: curvature and grad-B drifts

Definitions of curvature and grad-B drifts:
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The ratio between the magnetic parts of both drifts 
is computed at every simulation gridpoint in the 
case of high turbulence strength. A distribution is 

then obtained.

The curvature drift term systematically exceeds the grad-B one. In the high turbulence 
strength case, the rapid energisation is dominated by curvature drift.
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Results: possible observational signatures 

High turbulence strengthLow turbulence strength

u0 = 200 vA

Spatially intermittent density distributions when trapping is active

When trapping is active, energetic electrons show density clumps in correspondence of 
high-magnetic curvature region. These results can be put in context with other studies such 

as Yang+2019, Bandyopanday+2019

Trotta+, in prep.



Conclusions

The combination between turbulence amplitude and electron energy is extremely important 
when considering electron acceleration in turbulence, as it is found to control the electron 
energisation mechanisms at play. 

With the same initial electron energy, when turbulence strength is low (Brms/B0 = 0.06), 
electrons are only moderately energised, consistent with the second-order Fermi model 
(Fermi1949).  

On the other hand, when turbulence strength is high (Brms/B0 = 0.24), electrons are 
energised more efficiently, with a fast, injection phase due to trapping and subsequent 
acceleration due to curvature drift in turbulent magnetic structures. 
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