

Selecting Optimal Frequency Range for Estimating Depth to Magnetic Sources

These slides have added text to cover the spoken portion of the presentation

Stefan Westerlund, Richard Chopping, Quanxi Shao, and Juerg Hauser

May 2020 Australia's National Science Agency

Motivation

- Large quantities of aeromagnetic data are available, we want to analyse this data to create estimates of depth to basement, z_t
- We use spectral analysis because it is fast, but there are search parameters whose optimal values need to be determined
- We want an automated method for deciding these parameters, in particular the frequency range used and the window size
 - These parameters are often chosen survey wide, we want to determine locally-optimal values for these parameters

Outline

- 1. Introduction
 - a) Motivation
 - b) Outline
 - c) Frequency Range Example
 - d) Physical Model
- 2. Spectral Analysis Workflow

- 3. Frequency Range
 - a) Frequency Range Example
 - b) Choosing the Optimal Frequency Range
- 4. Demonstration on Australia
- 5. Window Size
- 6. Conclusion

Magnetic Depths Using Different Frequency Ranges

Up to 5 radians/km Results are close, but not robust

Optimal Range

Up to 20 radians/km Using more data, but fitting to noise

Using the Magnetic Anomaly Map of Australia, 6th Edition, by Geoscience Australia

4 | Introduction | Workflow | Frequency Range | Real-World Application | Window Size | Conclusion

Model

- We assume that the basement is a horizontal surface of randomly-magnetised material
 - The magnetisation of the basement rock is assumed to be fractally distributed, rather than uniform
- The basement is covered by some amount of non-magnetic sediment
- We are interested in the distance between the surface and the top of the magnetic layer, z_t
- The data is collected by a plane flying at a constant height above the ground
- The magnetic data is converted into a magnetic anomaly map
 - That is, it includes only the contribution from magnetic sources below the surface but not the Earth's or the Sun's magnetic fields

Spectral Analysis Workflow

Spectral Analysis Workflow

Frequency Range

- The parameters are determined by fitting the model to the log of the magnetic power spectrum
- The signal we are looking for is stronger at lower frequencies, and weaker at higher frequencies
- Therefore the data is dominated by the signal at lower frequencies, but it becomes dominated by noise at higher frequencies
 - Here "noise" includes noise from data collection, imperfections in data processing, and sidelobes from the Fourier transform

Optimal Maximum Frequency Across Australia

Frequency Range Examples

- Frequency range selection is a trade-off
- Using too little of the frequency range produces an unreliable fit
- Using too much fits to noise
- The crossover point varies between windows
- We fix the minimum frequency to that which corresponds to the un-tapered portion of the window

Frequency Range is Too Small

Frequency Range is Too Large

Optimal Frequency Range

 We can see that the optimal frequency range changes in different windows from the same dataset We have devised an automated method for choosing the optimal frequency range, based on identifying the linear potion of the spectrum

The red line shows the recovered depth z_t as a function of the upper limit of the frequency range for fitting

The dashed red line is the true depth for this example

 For each selection of data points, calculate the linear regression its R² value

- . Calculate Linear Regression -> R² values
- 2. Identify peaks in R² values

- 2. Identify peaks in R² values
- 3. Choose maxfrequency peak

. Calculate Linear Regression -> R² values

- 2. Identify peaks in R² values
- 3. Choose maxfrequency peak

4. Move to the edge of the plateau

Move right until the R^2 is less than 0.999 the value of the chosen peak

Magnetic Depths of Australia

- We now demonstrate out method using data from Australia
- The dataset used is the Magnetic Anomaly Map of Australia, 6th Edition, produced by Geoscience Australia
- This data has been collected from 836 grids, compiled into a single map
 - The data has been normalized to a flight height of 300 metres, which has been subtracted from the recovered depth values to produce a sediment thickness map

- Our depths are compared against the OzSEEBASE v2 Sediment Thickness map
- The combines magnetic, gravity, seismic, borehole, and outcrop data in the places where they are available

Magnetic Depths of Australia

Magnetic Depths of Australia

Remove depths that appear above observation height – these values are incorrect

150

9 10

21 Introduction | Workflow | Frequency Range | Real-World Application | Window Size | Condusion

But What About the Window Size?

Window Size

- Window size is also a trade-off
- Larger windows include more data, which helps to average out randomness of the sources, and noise
 - This is especially important for deeper sources, which are visible in a smaller portion of the power spectrum

- But larger windows include data from new locations
- Larger windows might include signal from multiple sources, and the strongest source will dominate the data
- Therefore smaller windows improve locality

Window Size

- We want to use the smallest window size that still accurately recovers the depth
- We are still developing a method to do this robustly
- Using iteratively larger windows can be inconsistent, as changes in depth can be due to either improving the depth recovery or due to observing a new source on the edge of the window

We can calculate the recovered depth as a function of window size and true depth, for synthetic data with a single layer

Conclusion

- Locally-optimal frequency range improves recovery of depth to basement
- Further improvement is possible by optimising the window size
- This technique is useful for automated, near-real time analysis of large data volume aeromagnetic surveys

Maximum Frequency Used In Parameter Fitting (40km Window)

Thank You

Deep Earth Imaging

Stefan Westerlund Postdoctoral Researcher

stefan.westerlund @data61.csiro.au

GSWA

Richard Chopping Manager Geoscience Mapping Through Cover

richard.chopping @dmirs.wa.gov.au

Data61 Quanxi Shao Principal Research Scientist

quanxi.shao@data61.csiro.au

Deep Earth Imaging Juerg Hauser Team Leader

juerg.hauser@csiro.au

