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Preliminary Results - Cloud Phase
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Fig. 4: Liqud, mixed and ice fraction binned by cloud top temperature (CTT) from -20°C to 0°C with a bin width of
: : _ 1°C. Circle size indicates number of data points in bin for each cloud phase. Data from 2007 to 2010 (top) JJA and
Cloud phase of DARDAR is vertlcally Sup « Mix > lce (bottom) DJF with (left) open MCC and (right) closed MCC regime.

resolved into:

Tab.1: Number of data points of open and closed MCC regimes with cloud top temperatures (CTT)

Mix - lce ] from -10 to O °C divided into three cloud phases in JJA and DJF. \ J

e Ice (lce)

e Mixed (Mix) Sup- ice | Liquid Mixed e __ :

e Liquid warm (Liq) | Preliminary Conclusions

Mix JJA
e Supercooled (Sup) | Open MCC 6393 (26.8%) 15683 (65.6%) 1849 (7.7%)
ce . . . o
Reduction of vertical cloud phase to Closed MCC 5204 (49.5%) 5214 (49.6%) 93 (0.9%) » Cloud morphology is impacted by ice for CTT above -3°C
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(see Flg 2) ice clouds for JJA and DJF in 2008. — indicates layer Closed MCC 20438 (33.9%) 39577 (65.6%) 328 (0.5%) Closed MCC or anization
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