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1. Motivation:
- GRACE (Gravity Recovery 
and Climate Experiment),

- Mapping the Earth’s time-variable
gravitational field (2002-2017),

- Altitude: ~460 km (above the Earth’s 
surface),

- Spatial resolution: several 100 km,

- Temporal resolution: ~1 month.
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- Revolutionary applications (geodesy, geophysics, hydrology, glaciology, 
oceanography, …),

- GRACE-FO launched in 2018 to extend GRACE time series,

- Methodology, processing, and background geophysical models
continuously improve,

- Standard approach for surface mass determination by Wahr et al. (1998) 
is based on the spherical approximation of the Earth,

- More realistic geometry, such as ellipsoidal, has to be considered 
for accurate modelling and geoscience applications.
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2. Theory:
A) Spherical surface mass (Wahr et al. 1998):

Geometry: Notation:
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B) Ellipsoidal surface mass (Ghobadi-Far et al. 2019):
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Geometry: Notation:
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3. Numerical experiments:
- Spherical vs. ellipsoidal approach for computing surface mass change rate 
(linear trend),

- GRACE Level 2 monthly gravitational fields by the Center for Space  
Research (Bettadpur 2012), 2003-2015, RL06, up to d/o 60,

- Corrected for GIA (A et al. 2012), geocenter motion (Swenson et al. 2008), 
from SLR (Cheng et al. 2013),

- Spherical surface mass changes calculated @ R = 6378136.3 m,

- Ellipsoidal surface mass changes calculated @ EGM08 reference ellipsoid 
(a = 6378136.3 m, b = 6356751.6 m).
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A) Spectrum of the surface mass change rate

Degree amplitudes Relative difference
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B) Surface mass change rate in Antarctica

Spherical approach Ellipsoidal minus spherical Relative difference

Absolute value of the signal 
> 10 cm/year
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C) Surface mass change rate in Greenland

Spherical approach Ellipsoidal minus spherical Relative difference

Absolute value of the signal 
> 10 cm/year
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4. Conclusions:
- We developed a rigorous ellipsoidal approach for the determination 
of the surface mass from the external gravitational field,

- The spherical approach by Wahr et al. (1998) underestimates the surface 
ice mass change by 10-15% in Antarctica and Greenland,

- Source codes implementing the ellipsoidal approach are available 
to potential users.

More details can be found in:

Ghobadi-Far K, Šprlák M, Han S-C (2019) Determination of ellipsoidal surface mass change
from GRACE time-variable gravity data. Geophysical Journal International 219(1):248-259.
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Thank you for your attention!!!
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