

Huanhuan Wang, Eyal Rotenberg, Michael Sprintsin,
Anatoly Gitelson, Dan Yakir

Introduction

- ☐ The time of peak photosynthetic activity is dominated by radiation levels in boreal ecosystems, and is significantly advanced to earlier periods with decreasing water availability in semi-arid and arid regions (Rotenberg & Yakir, 2010; Park et al., 2019)
- Under global warming, many studies have reported reduction in forest productivity and enhanced mortality (Dai, 2013; Allen *et al.*, 2015), but some semi-arid ecosystems show surprisingly high productivity and resilience to stress (Grünzweig *et al.*, 2003; Cleverly *et al.*, 2013; Tagesson *et al.*, 2015; Yan *et al.*, 2019)
- ☐ Much less information is available, however, on the ecophysiological processes that underlie the plant adjustments to changes in these forcing, particularly at semi-arid ecosystems.

Rotenberg & Yakir, 2010. Science.

Objectives

Combing eddy covariance (EC) and remote sensing (RS) measurements, to identify ecophysiological adjustments that:

- 1) Underlie the unusually short productive season during suboptimal radiation and temperature conditions
- 2) Provide tolerance during the long seasonal drought

Methodology

Flux tower measurements:

- Gross Primary Production (GPP)
- Photosynthetic Active Radiation (PAR_{in})
- Air temperature (T)
- Vapor Pressure Deficit (VPD)
- Precipitation (P)
- Soil Water Content (SWC)

Close-range sensing measurements:

- Canopy reflectance at 570nm, 660nm, 860nm
- Leaf reflectance, 320-790nm, in 2nm step

Equations:

$$NDVI = (\rho_{NIR} - \rho_{red})/(\rho_{NIR} + \rho_{red})$$

$$\alpha_{chl} = \rho_{NIR}/\rho_{green} - 1$$

$$APAR = PAR_{in} \times NDVI$$

$$LUE = GPP/APAR$$

$$CI_{re} = \rho_{NIR}/\rho_{re}$$
 -1

$$Chl = 833.33 \ CI_{re} - 2.25$$

Absorption coefficient

Absorbed PAR

Light Use Efficiency

Red edge Chlorophyll Index

Chlorophyll content

Eddy covariance tower

Skye spectrometer

Polypen leaf spectrometer

Dynamics of GPP and other ecophysiological parameters

- GPP and LUE did not follow PAR pattern, but rather peaked in low PAR, but high SWC periods.
- ☐ GPP maximized about 1 month later than the highest SWC.

Results

Light absorption and photosynthesis

Absorption coefficient $\alpha_{\rm chl}$ = ρ_{NIR}/ρ_{green} - 1 PAR $_{\rm in}$ × $\alpha_{\rm chl}$ = Scaled APAR

☐ Peak time of GPP is when there is a optimal combination of remaining SWC, sufficiently high PAR and APAR and temperature

Results

Relationship between canopy ρ_{NIR} and PAR_{in}

Negative correlation between ρ_{NIR} and PAR_{in} reflects canopy structural changes, to enhance light absorption in the low PAR wet season and eliminate over-excitation in the high PAR dry summer

Conclusions

- 1) Peaks in light use efficiency (LUE), leaf chlorophyll content (LCC), increase in the absorption of photosynthetic active radiation (PAR) and in near-infrared reflectance (ρ_{NIR}) intricately converged to support an early intensive spring peak (March) in gross primary productivity (GPP), exploiting the tradeoffs between increasing PAR and temperature, and rapidly drying soil.
- 2) In contrast, during the long dry stressful period with rapidly declining GPP under high and potentially damaging PAR, physiological photoprotection was conferred by decreasing LCC, LUE and ρ_{NIR} .
- 3) The results provide evidence for canopy-scale ecophysiological adjustments that can be detected by spectral measurements.
- 4) A pine forest under the harsh conditions prevailing at the dry timberline presents high productivity and resilience, which may soon apply to forests in other regions undergoing climate change.