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Figure 2: Cenomanian–Turonian world

Bass River and other examples of studied Cenomanian–Turonian records. Adapted from refs. 2 and 6. 

Figure 3: Volcanism and temperature proxy data from Bass River (ODP Leg 174 AX)
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Methods:

The Cenomanian–Turonian Oceanic Anoxic Event (OAE 2) was one of the most severe global crises of the Mesozoic Era. As 
well as the development of widespread marine anoxia and organic-carbon burial (typically recorded by the preservation of 
organic-rich shales and a positive carbon isotope excursion – CIE), a number of other environmental perturbations took place,
including siginificant climing warming.

This enhanced organic-matter burial, potentially aided by carbon sequestration via increased silicate weathering, resulted in an abrupt
pulse of global cooling within the overarching warming during the early part of OAE 2, dubbed the Plenus Cold Event (PCE).      However, 
the exact timing of this cooling was likely geographically diachronous.    

The ultimate driver of OAE 2 is largely thought to have been intense volcanic activity related to the formation of one or 
more Large Igneous Provinces (LIPs): represented as on the order of 1 Mkm of igneous material emplaced on to/in to the 
Earth’s crust geologically rapidly (<1 Myr). For OAE 2, several oceanic LIPs (oceanic plateaus) have been implicated.

A limited number of radioisotopic dates support a temporal link between oceanic-plateau activity and OAE 2; however, the stronger 
evidence comes from a shift in the osmium- (Os-) isotope composition of seawater (Os(i)) to near mantle-like values (Figure 1) recorded in 
multiple records of the OAE  from several ocean basins.         This plateau emplacement is thought to have begun ~60 kyr prior to OAE 2.

However, direct comparisons between Os-isotope records of volcanism and temperature change proxy trends have seldom
been undertaken for OAE 2. 

This study presents new Os-isotope trends from a record of OAE 2 from the Bass River Core (ODP Leg 174 AX; NJ, USA), which was 
deposited on the New Jersey Shelf area of the Proto North Atlantic (Figure 2). Previous studies have clearly de�ned the OAE 2 level by a 
positive CIE,       and highlighted the elevated sea-surface temperatures typical of OAE 2, as well as the Plenus Cold Event cooling.

Using globally documented OAE 2 Os-isotope trends, we employ Os-isotope stratigraphy to refine the age constraints and 
placement of the Cenomanian–Turonian boundary (CTB) in the Bass River record. Additionally, the osmium records of 
volcanic activity are compared to the palaeotemperature trends from the same site. 

 
 

A relative enrichment in ‘common’     Os, very low unradiogenic Os(i) ratios in the basal OAE 2 strata, and recovery to more radiogenic values in the 
upper part of the OAE level are all consistent with other Cenomanian–Turonian (Os(i)) records (Figure 3) This suggests that global ocean (rather 
than local) Os trends are recorded, with the low Os(i) interpreted as marking intense oceanic-plateau activity, as for previous studies.

There is no record of the initial shift to unradiogenic Os(i) values below OAE 2 strata, which marks the onset of oceanic-plateau activity; this might be 
preserved in sediments deposited below the bottom of the Bass River core. 

There is a negative CIE within the overarching positive excursion at Bass River, reminiscent of the negative CIE which is typically associated with 
the PCE at other OAE 2 sites. However, correlating the Bass River C- and Os-isotope records with other sites indicates that the Bass River negative 
CIE is too high with respect to the Os(i) curve for that excursion, and may mark a subsequent CIE sometimes seen just below the CTB (Figure 4). 

Age models of the duration of the whole OAE 2 CIE and the time interval recorded between the CTB and turning point in Os(i) towards radiogenic 
values from the Wunstorf, Iona #1, and Portland #1 cores (refs., 12,13,14; Figure 5) suggest that the CTB at Bass River should be placed at 585.5±0.7 mbs. This 
estimate assumes a constant sedimentation rate at Bass River; if the basal OAE strata were actually condensed (as reported for other records), the CTB level 
may in fact be slighly higher,  more consistent with carbon-isotope correlations (as proposed by ref. 2).

Comparing the palaeotemperature and Os(i) data from Bass River highlights that oceanic-plateau activity was ongoing during the sea-surface
temperature fall at that location, but was waning by the time that the PCE ended and relatively low for 100s kyr through the second half of OAE 2 
when global temperatures were high. This is the opposite of what might be expected, and suggests a complex relationship between oceanic-
plateau activity and climate change during OAE 2. 

Re-Os analyses were performed by NTIMS techniques on a ThermoScienti�c Triton N-TIMS at 
Durham University, following carius-tube digestion with Cr   O3-H2SO4 followed by Os 
puri�cation by solvent extraction and microdistillation after ref. 15, and Re puri�cation by single-
bead anion chromatography after treatment by NaOH and acetone.   Procedural blanks were
19.4±2.0 pg for Re, 0.07±0.01 pg for Os, with a     Os/     Os ratio of 0.16+0.05 (n=4). Mean standard
    Os/     Os (50 pg DROsS) and     Re/    Re (125 pg ReSTD) values were 0.160749±0.000159 
(1 σ) and 0.59820±0.00082 (1 σ), respectively, consistent with running averages for the lab.    

New organic carbon-isotope data for the Bass River core were generated on decarbonated
powders by analysis on a Thermo Delta-V couped to an EA Isolink CN mass spectrometer at
Utrecht University.
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Figure 1: Simplified osmium cycle

Simpli�ed illustration of the main sources of osmium to the ocean (adapted from ref. 6). Mantle volcanism (or seawater-interactions 
of primitive basalts supply chie�y unradiogenic    Os, continental weathering chie�y supplies radiogenic    Os. The proportion of 
thevarious �uxes controls the seawater      Os/     Os ratio (e.g. more submarine volcanism will decrease the ratio).

Foraminiferal carbon-isotope data from ref. 11 , organic carbon-isotope data from ref. 2 and this study, sea-surface temperature, and boreal-fauna abundance data from ref. 2.
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Figure 4: OAE 2 site-to-site stratigraphic correlation
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Figure 5: The Bass River CTB age model

Carbon-isotope data from refs. 2,12–14 and this study. Osmium-isotope data from refs. 7,9 and this study. 
Age models for the Wunstorf Core, Iona #1 Core, and Portland #1 Core from refs. 12,13, and 14, respectively.Carbon-isotope data from refs. 2–4,12–14,18 and this study. Osmium-isotope data are from refs. 8–10 and this study.

17

16

1

5

see 6–8

7–10 10

2,11 2

7–10

12

8,12

9,13

9,13

14

10,14


