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1) Introduction

Elastic wave propagation is commonly studied in geophysics
for prospecting, to follow the exploitation of hydrocarbon reser-
voirs, or to study the effect of fluid injection (CO:2 storage).
can be difficult to compare elastic wave measurements in the
laboratory to those in the field.

In the field, log wells tests are usually around the frequency
range of 10 kHz where a typical lab measurement is done in
the MHz range using ultrasonics. This Iis an issue when com-
paring these due to the dispersive nature of these porous ma-
terials.

Using forced axial oscillations first introduced by Batzle et al.
(2006) there have been improvements in the range of frequen-
cies at which samples can be tested. At ENS, piezoelectri ac-
tuators and pore fluid substitution allows a larger range of fre-
guencies to be tested between 0.001 Hz to 1 MHz not Inclu-
sively.

This poster presents the elastic properties of a sample using
well understood experimental methods and directly comparing
these with well log data.

4) Forced Oscillations
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Figure 4: Strain gauge position (Left); Hydrostatic oscillations (A and B); Axial oscillations (C and D);[Borgomano et al., 2020]

Fast Fourier Transforms are used to find the stress and strain signals from the forced oscillations
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3) Laboratory Setup

The TOP industrie triaxial cell:
-Cell pressure range: 0 - 100 MPa
-Axial pressure range: 0 - 700 MPa
-Cell Temp. range: 20 - 100 °C
-acquisition up to 14 strain gauges
-and with 1 piezoelectric oscillator
-and with 4 ultrasonic transducers
-P&S wave ultrasonic transducers
along the length of the sample

2) Sample I

The sample that was tested is a
presalt carbonate.

The sample and its X-ray scans
can be seen in Figure 1 and 2. The
sample Is relatively homogeneous
and belongs to the granular facies.

Figure 1: Picture of sample

e Other Characterizations:

Four other samples were Sample size: 40 mm diameter, 80 mm height

Maximum sampling frequency 4 kHz
350 ohms axial and radial strain gauges

also collected from the same
area with varying facies

(shrub and coquina) and » Piezoelectric oscillator: Pl - PICA Stack
heterogeneities. This will with 30 um displ., 48 kN blocking force and 32
kHz free resonant frequency

unrolied

allow us to study the disper-

sion of similar samples with e Microvalves: piloted microvalves in the end-
different facies. platen to achieve either drained or purely
undrained conditions for the pore fluid (dead
volume of 20 ul when closed)
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Figure 2: X-rays of sample

Sample Properties
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Frequenc
n (Pa*s) K. (GPa) Method Measures quency
Range (Hz)
Hydrostatic
Water 0.00089 2.24 yarost K 103 to 1.3
Oscillation
Brine 0.0018 3.7 Axial E,v 102 to 107
Oscillation
Glycerin 1 4.36 Ultrasonics V), V, 10°

Table 1: Dynamic viscosity and Bulk Modulus of pore fluids [ Batzle and Wang 1992] Table 2: Summary of tests used, what they directly measure and their frequency

Porosity (¢) = 16.8 %
Permeability (k) = 84 mDa
Mineral Composition= 95.3% Calcite, 4.7% Quartz
Reservoir Properties = Pore Pressure 63 MPa, Confining

e \When investigating the dispersion due to vis-
cous fluid flow, frequency can be scaled by
the fluid viscosity to extend the apparent fre-
guency following: £ n,

770—> is for Brine in this case

Pressure 90 MPa, Deviatoric Stress 6 MPa
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Sample : LIBRA1 Axial DRY ¢ ©
Conditions : DRY and GLYC Undrained Axial GLYC ¢ O

5) Preliminary Results
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The sample was tested at effective pressures of §, 1§ and 25 MPa. The maximum effective pressure was

recorded at 27 MPa. The sample is isotropic (88.5 %).

Well Log P_=25MPa

6) Conclusions

 Biot Gassmann predicts the Undrained modulus

e There is some evidence of dispersion around the well log frequencies.
This may be due to squirt-flow relative to microcracks or grain to grain
contact.

* The lab results are similar to the log well data with some discrepancies
which may be due to the uncertainties of the pore fluid pressure.

[) Perspectives

e More tests needed at higher effective stresses and in situ stresses

* Complete testing on all 5 samples with different facies, compositions and
heterogeneities

Figure 5: Bulk Modulus (A), Bulk Attenuation (B), Shear Modulus (C) and Shear Attenuation (D) versus frequency for Figure 6: Bulk Modulus (A), Young Modulus(B), Shear Modulus (C) and Poissson’s ratio (D) versus frequency for dry,
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brine and glycerin saturated conditions of sample LIBRA 1 and well log data comparison
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dry, brine and glycerin saturated conditions of sample LIBRA 1
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