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Tectonic versus sea-level control on sedimenation
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Depositional space and depositional facies sedimentary basins in plate tectonic settings, from passive to active
margins, intramontane, continental retro-foreland, extensional back-arcs and continental strike-slip settings.
Depositional space appears triangular in cross-sectional view against active faults, even when individual sub-basins
are ultimately connected, and can be sourced from multiple directions at various elevations.

When tectonics play a subsidiary role, the sediment source tends to be unidirectional, e.g., in passive margins.




3 Tectonic Successions, one order
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TS = tectonic succession SB = succession bounday  POR = point of reversal
SFT = sourceward-shifting facies tract BFT = basinward-shifting facies tract
OAS = rate of creating accommodation space 8SS = rate of sediment supply

- Conceptual definition of lower-order (i) tectonic successions (TS) in fault-bounded sedimentary basins that are
composed of a sourceward-shifting facies tract (SFT) and a basinward-shifting facies tract (BFT).




4 Tectonic Successions, two orders
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TS = tectonic succession SB = succession bounday  POR = point of reversal
SFT = sourceward-shifting facies tract BFT = basinward-shifting facies tract
OAS = rate of creating accommodation space 9SS = rate of sediment supply

- Conceptual definition of lower-order (i) and higher-order (i+1) tectonic successions (TS) in fault-bounded
sedimentary basins that are composed of a sourceward-shifting facies tract (SFT) and a basinward-shifting facies
tract (BFT).




5 Extensional basins and passive margins
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- Model of a continental rifting structure buried beneath the sediments of a passive continental margin, sediments
respond to moments of the normal fault activations by producing retrograding-prograding patterns.

after Partington et al., 1993



6 Depositional successions in rifted basins
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- Various expressions of tectonic successions, illustrated by previous research in worldwide examples of rift basins.

Ravnas and Steel, 1998; Prosser, 1993; Frostick and Steel, 1993; Martins-Neto and Catuneanu, 2010; Nottvedt et al., 1995



7 Depositional successions in extensional basins, Pannonian Basin
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- Line-drawing interpretation of a reflection seismic line from the Kiskunhalas Trough (Pannonian Basin), which
illustrates the interplay between a lower-order tectonic succession separated by basal and top (red line) succession
boundaries and higher order tectonic successions created by individual movements along the basin boundary fault.

Balazs et al., 2016, Tectonics



8 Tectonic successions, SE Asia reflection seismics example
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- Seismic line in the North Malay Basin (Gulf of Thailand). The fault-bounded part of the seismic line illustrates a
good example where high-order tectonic successions and succession boundaries (TSi+1 and SBi+1) may be
discriminated from the low-order tectonic successionsand succession boundaries (TSi and SBi).

after Morley and Westaway, 2006



9 Depositional successions in extensional basins, numerical modelling
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- Numerical modelling of extensional half-graben sedimentation during periods of fault activation and their interplay
with sea-level changes in continental to lacustrine environments. The numerical modelling assumes a 9 Ma syn-rift
period, followed by 4 Ma of post-rift subsidence.

Balazs et al., 2017, Tectonics



10 Depositional successions in compressional basins, Alps foreland
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- Regional geologic cross section through the Alpine thrust front and foreland basin system illustrating the interplay
between lower and higher order tectonic successions of source-ward and basin-ward facies migration and higher
resolution sea-level variations recorded by the basin.

after Covault et al., 2009



11 Depositional successions in strike-slip basins
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- Model and cross-section illustrating the development of tectonic successions in strike-slip to extensional
deformation, applied to the transtensional Pliocene-Pleistocene San Gabriel Basin located in the San Andreas

transcurrent system.

after Yeats, 2004



12 Depositional successions in sag basins, Transylvanian Basin
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- Tectonic successions in a sag basin characterized by a gradual change in bathymetry and where an equivalence
between the tectonic successions and sequence-stratigraphic nomenclature can attempted

Matenco et al., 2010



13 Tectonic-driven mass-transport
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14 Controls on deposition
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- Definition of tectonics, sediment supply, sea-level (eustasy) components, which cumulatively result in a creation of
either a SFT or a BFT. Because the sediment supply and sea-level variations work against tectonic effects, erosion
and sea-level rise are displayed increasing downwards, while sedimentation and sea-level fall are displayed
increasing upwards, which is contrary to usual convention.




15 Controls on deposition
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- Schematic representation of SFT-BFT tectonic successions in parts of the basins where tectonics, sediment supply
or sea-level variations have a dominant control.




16 Time and amplitudes of mechanisms driving bathymetry changes
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Temporal and spatial variability of the mechanisms that drive observed sea-level variations and create or wipe out
depositional space (note the logarithmic scale). Mechanisms that have a direct tectonic component are depicted in
green. All other mechanisms have a primary impact in sea-level variations
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Conclusions

Tectonics is a key factor driving accommodation space for sedimentation at all
spatial and temporal scales;

The large overlap between temporal scales makes the assignment of tectonics in
fixed temporal cycles rather impractical;

Tectonic successions is a far better suited tool to quantify the link between tectonic
and sedimentation in active regions;

Sequence stratigraphy remains an important tool at passive margins where sea-level
variations are higher and sediment input is dominantly unidirectional.
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Thank you. Questions?
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