Multi-Scale Depositional Successions in Tectonic Settings

Liviu Matenco and Bilal Haq

Utrecht University, Faculty of Geosciences, Department of Earth Sciences, The Netherlands

All figures are taken with no modifications from:

Matenco, L.C. and Haq, B.U., 2020. Multi-scale depositional successions in tectonic settings. Earth-Science Reviews, 200, 102991, <u>https://doi.org/10.1016/j.earscirev.2019.102991</u>

Open access publication under <u>Creative Commons license</u>

Tectonic versus sea-level control on sedimenation

2

- Depositional space and depositional facies sedimentary basins in plate tectonic settings, from passive to active margins, intramontane, continental retro-foreland, extensional back-arcs and continental strike-slip settings.
- Depositional space appears triangular in cross-sectional view against active faults, even when individual sub-basins
 are ultimately connected, and can be sourced from multiple directions at various elevations.
- When tectonics play a subsidiary role, the sediment source tends to be unidirectional, e.g., in passive margins.

Tectonic Successions, one order

- Conceptual definition of lower-order (i) tectonic successions (TS) in fault-bounded sedimentary basins that are composed of a sourceward-shifting facies tract (SFT) and a basinward-shifting facies tract (BFT).

Tectonic Successions, two orders

 Conceptual definition of lower-order (i) and higher-order (i+1) tectonic successions (TS) in fault-bounded sedimentary basins that are composed of a sourceward-shifting facies tract (SFT) and a basinward-shifting facies tract (BFT).

Extensional basins and passive margins

- Model of a continental rifting structure buried beneath the sediments of a passive continental margin, sediments respond to moments of the normal fault activations by producing retrograding-prograding patterns.

Depositional successions in rifted basins

- Various expressions of tectonic successions, illustrated by previous research in worldwide examples of rift basins.

Ravnas and Steel, 1998; Prosser, 1993; Frostick and Steel, 1993; Martins-Neto and Catuneanu, 2010; Nottvedt et al., 1995

7 Depositional successions in extensional basins, Pannonian Basin

Line-drawing interpretation of a reflection seismic line from the Kiskunhalas Trough (Pannonian Basin), which
illustrates the interplay between a lower-order tectonic succession separated by basal and top (red line) succession
boundaries and higher order tectonic successions created by individual movements along the basin boundary fault.

Tectonic successions, SE Asia reflection seismics example

Seismic line in the North Malay Basin (Gulf of Thailand). The fault-bounded part of the seismic line illustrates a
good example where high-order tectonic successions and succession boundaries (TSi+1 and SBi+1) may be
discriminated from the low-order tectonic successionsand succession boundaries (TSi and SBi).

⁹ Depositional successions in extensional basins, numerical modelling

 Numerical modelling of extensional half-graben sedimentation during periods of fault activation and their interplay with sea-level changes in continental to lacustrine environments. The numerical modelling assumes a 9 Ma syn-rift period, followed by 4 Ma of post-rift subsidence.

¹⁰ Depositional successions in compressional basins, Alps foreland

- Regional geologic cross section through the Alpine thrust front and foreland basin system illustrating the interplay between lower and higher order tectonic successions of source-ward and basin-ward facies migration and higher resolution sea-level variations recorded by the basin.

Depositional successions in strike-slip basins

Model and cross-section illustrating the development of tectonic successions in strike-slip to extensional deformation, applied to the transtensional Pliocene-Pleistocene San Gabriel Basin located in the San Andreas transcurrent system.

¹² Depositional successions in sag basins, Transylvanian Basin

 Tectonic successions in a sag basin characterized by a gradual change in bathymetry and where an equivalence between the tectonic successions and sequence-stratigraphic nomenclature can attempted

Tectonic-driven mass-transport

Outcrop-scale images and interpretation in the Sorbas Basin of SE Spain, illustrating the difference between the paleophysiography controlling the distribution of basin-ward and source-ward shifting facies tracts and the grain size distribution of sediments in the basin

Controls on deposition

 Definition of tectonics, sediment supply, sea-level (eustasy) components, which cumulatively result in a creation of either a SFT or a BFT. Because the sediment supply and sea-level variations work against tectonic effects, erosion and sea-level rise are displayed increasing downwards, while sedimentation and sea-level fall are displayed increasing upwards, which is contrary to usual convention.

Controls on deposition

- Schematic representation of SFT-BFT tectonic successions in parts of the basins where tectonics, sediment supply or sea-level variations have a dominant control.

¹⁶ Time and amplitudes of mechanisms driving bathymetry changes

 Temporal and spatial variability of the mechanisms that drive observed sea-level variations and create or wipe out depositional space (note the logarithmic scale). Mechanisms that have a direct tectonic component are depicted in green. All other mechanisms have a primary impact in sea-level variations

- Tectonics is a key factor driving accommodation space for sedimentation at all spatial and temporal scales;
- The large overlap between temporal scales makes the assignment of tectonics in fixed temporal cycles rather impractical;
- Tectonic successions is a far better suited tool to quantify the link between tectonic and sedimentation in active regions;
- Sequence stratigraphy remains an important tool at passive margins where sea-level variations are higher and sediment input is dominantly unidirectional.

Thank you. Questions?

References used in slides

- Andrić, N., Matenco, L., Hilgen, F., de Bresser, H., 2018. Structural controls on sedimentation during asymmetric extension: the case of Sorbas Basin (SE Spain).
 GlobalPlanet. Change 171, 185–206.
- Balazs, A., Matenco, L., Magyar, I., Horv.th, F., Cloetingh, S., 2016. The link between tectonics and sedimentation in back-arc basins: new genetic constraints from the analysis of the Pannonian Basin. Tectonics 35, 1526–1559.
- Balazs, A., Granjeon, D., Matenco, L., Sztan., O., Cloetingh, S., 2017. Tectonic and climatic controls on asymmetric half-graben sedimentation: inferences from 3-D numerical modeling. Tectonics 36, 2123–2141.
- Covault, J.A., Hubbard, S.M., Graham, S.A., Hinsch, R., Linzer, H.-G., 2009. Turbidite reservoir architecture in complex foredeep-margin and wedge-top depocenters, Tertiary Molasse foreland basin system, Austria. Mar. Petrol. Geol. 26, 379–396.
- Frostick, L.E., Steel, R.J., 1993. Tectonic signatures in sedimentary basin fills: an overview. Spec. Publ. Int. Assoc. Sediment. 20, 1–9.
- Martins-Neto, M.A., Catuneanu, O., 2010. Rift sequence stratigraphy. Mar. Petrol. Geol. 27, 247–253.
- Matenco, L., Kr.zsek, C., Merten, S., Schmid, S., Cloetingh, S., Andriessen, P., 2010. Characteristics of collisional orogens with low topographic build-up: an example from the Carpathians. Terra Nova 22, 155–165.
- Morley, C.K., Westaway, R., 2006. Subsidence in the super-deep Pattani and Malay basins of Southeast Asia: a coupled model incorporating lower-crustal flow in response to post-rift sediment loading. Basin Res. 18, 51–84.
- Nottvedt, A., Gabrielsen, R.H., Steel, R.J., 1995. Tectonostratigraphy and sedimentary architecture of rift basins, with reference to the northern North Sea. Mar. Petrol. Geol. 12, 881–901.
- Partington, M.A., Mitchener, B.C., Milton, N.J., Fraser, A.J., 1993. Genetic sequence stratigraphy for the North Sea Late Jurassic and early cretaceous: distribution and prediction of Kimmeridgian–late Ryazanian reservoirs in the North Sea and adjacent areas. In: Geological Society. London, Petroleum Geology Conference series 4. pp. 347–370;
- Prosser, S., 1993. Rift related depositional system and their seismic expression. In: Williams, G.D., Dobb, A. (Eds.), Tectonics and Seismic Sequence Stratigraphy, vol. 71. Geol. Soc. London, Spec. Publ., pp. 35–66.
- Ravnas, R., Steel, R.J., 1998. Architecture of marine rift-basin successions. AAPG Bull. 82, 110–146;
- Yeats, R.S., 2004. Tectonics of the San Gabriel Basin and surroundings, southern California. GSA Bull. 116, 1158–1182.