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Motivations

● No reliable 3-D velocity model for Israel
source locations using various 1-D regional & local models

● Required for local Earthquake Early Warning System
Dead Sea fault and network geometry, topography in Dead Sea Basin and Sea of Galilee

● Necessary to improve CTBT monitoring
integration into a regional model for the Eastern Mediterranean and Middle East region (EMME)

EEWS

CTBT

📖 Hofstetter et al. (2012)
Pinsky et al. (2013)

http://www.gsi.gov.il/eng/?CategoryID=300&ArticleID=899
https://www.ctbto.org/
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Research plan

● Building of local travel time database
revision of existing bulletin data, collection of unpublished data

● Identification of events with high ground-truth (GT) accuracy
GT0 (known location) explosions, GT5 (location error < 5 km) earthquakes and explosions

● Joint relocation of different types of seismic sources
explosion data for better coverage, GT locations used as references

● Assembling of a starting model for Israel
compilation of geophysical data, crustal structure, etc.

● Tomographic inversion for a crustal model of Israel
FMTOMO, P-wave earthquake and explosion data

● Using the crustal model as starting point for regional model
RSTT method (CTBT), designed to allow real-time travel-time calculations

Schardong et al. 
(to be submitted)

Future work



● Published by the Geophysical Institute of Israel
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Israeli seismic bulletin

Figure 1:
Local M>1.5 seismicity; explosions

Figure 2:
ISN monitors most 

stations; other 
networks collected

GII

http://seis.gii.co.il/en/indexEn.php


Azimuth discrepancy is the diƦerence 
between reported azimuth and 
recalculated azimuth based on 

available station catalogue
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Revision of the bulletin data

Figure 3:
Event-to-station azimuth discrepancy 

before and after revision at RTMI for 
each seismic phase: Pg, Pn, Sg, Sn

Numerical 
precision of 
azimuth in 

bulletin is 1°

● Irregularities in the bulletin data
clocking errors, missing station location history, etc.

● Large uncertainties on source locations
various 1-D reference models, local or regional

● Review of online station catalogues
ISC, IRIS, FDSN, EMSC, etc.

● Assembling of new station catalogue
correction of station activity periods, locations, code names, etc.

Wetzler & Kurzon (2016)📖

http://www.isc.ac.uk/
http://www.iris.edu/hq/
http://www.fdsn.org/networks/
http://www.emsc-csem.org/#2
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Event classification

● GT0: explosions with known location
calibration explosions, old ammunition detonations, etc.

● GT5: event with GT accuracy greater than 5 km
based on network coverage parameters as defined by Bondár et al. (2004)

 A seismic source is GT5 if:

more than 10 recording 
stations within 250 km

primary azimuthal gap 
(gP) of less than 110°

secondary azimuthal gap 
(gS) of less than 160°

at least one station within 
30 km

Figure 4:
Station coverage 
of (a) 
earthquakes and 
(b) explosions. 
Colour gives 
primary 
azimuthal gap; 
size gives 
number of 
stations.
Symbols depend 
on source type.

📖 Bondár et al. (2004)
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Event relocation

● Multiple-event seismic locator BayesLoc
apply TT correction to account for systematic errors, check phase labels

● Origin priors depending on source location accuracy
GT0 locations fixed, little variations around GT5 locations

● Selection of sources with best network coverage
>5 recording stations, primary azimuthal gap <90°

EQ EXP GT5 GT0

Epicentre [km] 10 10 2.5 0.01

Depth [km] 10 0.1 2 0.01

Origin time [s] 15 - 10 0.25

Source type NS NA

EQ 369 4,784

EXP 2,150 19,878

GT5 1,412 27,677

GT0 200 2,873

Total 4,131 55,212

Table 2:
Origin priors for each 

source type

Table 1:
Number of 

sources (NS) 
and arrivals 
(NA) for each 
source type

Myers et al. (2007, 2009)📖

LLNL

https://www-gs.llnl.gov/nuclear-threat-reduction/nuclear-explosion-monitoring/bayesloc
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New travel time database

● Arrival-time variance reduction of 50-80%
elimination of outliers and mislabelled phases

● TT corrections eliminate systematic errors 
arrivals align with theoretical curves (TauP with ak135)
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Figure 5:
Arrival-time residuals before (GII) 

and after relocation for each seismic 
phase: Pg, Pn, Sg, Sn

Figure 6:
Travel time as a function of distance 
before (GII) and after relocation for 

each phase arrival: Pg, Pn, Sg, Sn

Crotwell et al. (1999)
Kennett et al. (1995)📖
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New source locations

● Most sources relocated <5 km from initial location
GT5 source locations vary much less than allowed

● 96-99% of non-GT5 sources have uncertainty <5 km
new GT5’s can be used to improve even less accurately-located sources

Figure 7:
Distance from initial locations for 

each source type

Figure 8:
Location uncertainties for non-GT5 earthquakes and 

explosions in the east-west and north-south directions
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Starting model for Israel 📖

● Moho depth variations
extracted from new compilation of crustal thickness maps in the EMME

● Starting velocity model 
compilation of geological and geophysical data from the Geological Survey of Israel

Figure 9:
Moho depth maps 
in the EMME 
region.
(a) Pre-existing 
Moho map
(b) New Moho map 
of Gvirtzman et al. 
(2016).

Gvirtzman et al. (2016)

GSI

http://www.gsi.gov.il/eng/
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Crustal velocity model for Israel 📖 Rawlinson et al. (2006)

● Forward modelling uses Fast Marching 
Method (FFM)
simplified ray tracing at any scale

● Wide variety of input data types and 
seismic phases
possibility to combine local and teleseismic data

● Model parameterisation allows complex 
structures
3-D starting model for velocity and crustal thickness

● Vertical grid spacing of 5 km (-35 to +5 km)

● Horizontal grid spacing of 0.25° (7.5°x6.5°)
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Regional tomographic model of the EMME 📖 Phillips et al. (2007)
Myers et al. (2010)

● RSTT: software and regional model
designed for real-time travel time calculations

● Global tessellation of nodes every 1°
1-D profiles interpolated to build 3-D model of crust and 
upper mantle

● Ultimate goal is global model to predict 
regional phases
studies already conducted in Eurasia and North America



THANKS!

Any questions?

lschardong@tauex.tau.ac.il
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