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Rationale

• High time resolution ( ~5s) plasma parameter fits are extremely challenging 
for commonly used incoherent scatter analysis tools, such as the GUISDAP 
package of EISCAT [1].

• In addition, the electron 𝑇𝑒 and ion 𝑇𝑖 temperatures are calculated using 
ion composition 𝑝 = Τ𝑂+ 𝑁𝑒 profiles taken from an empirical model, for 
example the IRI model [2].

• High time resolved plasma parameters are necessary to investigate small 
scale auroral activities.

• Incorrectly modeled ion compositions may cause bias in ion and electron 
temperature estimates.

• In this project, we use Bayesian filtering to estimate plasma parameters, 
including the ion composition with high time resolution.



Bayesian Filtering

• The procedure in Bayesian filtering [3] incoherent scatter analysis has two 
steps.

• Prediction step: best prediction of plasma parameters at current time 
step is evaluated using estimates from the previous time step. The 
prediction step contains a correlation prior [4] to control smoothness of 
the plasma parameter profiles in range direction.

• Update step: the prediction is updated using measured incoherent scatter 
spectra to produce our best estimates of the plasma parameters at current 
time step.

• We have implemented Bayesian filtering as an additional Bayesian Filtering 
Module (BAFIM) to the GUISDAP analysis package.



Plasma Parameter Fits

Default GUISDAP fit BAFIM fit



Plasma parameter Fits Cont’d

• BAFIM performance is tested with EISCAT Svalbard radar data and 
the analysis results are plotted in the previous slide.

• The plasma parameters in the default GUISDAP and BAFIM analysis 
are calculated with 60 s and 6 s time steps, respectively.

• In the default GUISDAP fit, there is enhancement in 𝑇𝑖 around 200 
km, because the IRI model assumes too much molecular ions there.

• The artefact in 𝑇𝑖 is not present in the BAFIM results.

• The black line in the composition plot is the transition altitude where 

equal amount of molecular ൫𝑵𝑶+ and ൯𝑶𝟐
+ and atomic 𝑶+ ions 

exist in the ionosphere. 

• The transition altitude in the BAFIM fit is in general at lower altitude 
than in the IRI model, which is used in the default GUISDAP.



Energy Spectra of Precipitating Electrons

• Differential energy flux of precipitating electrons can be estimated from 
ISR measured electron density and temperature profiles [5, 6, 7, 8].

• In a standard analysis, the ELSPEC software [5] calculates the 
differential energy flux using the raw 𝑁𝑒 , which is calculated from the 
backscattered power assuming 𝑇𝑒=𝑇𝑖. The electron temperature (𝑇𝑒) is 
fitted with the default GUISDAP with 60 s time resolution and 
interpolated to the resolution of the raw 𝑁𝑒 (~5s).

• However, when there is electron heating by precipitation, the raw 
electron density estimation becomes biased, because 𝑇𝑒 > 𝑇𝑖.

• With BAFIM we can fit 𝑁𝑒 , 𝑇𝑒 and 𝑇𝑖 with short time steps (~5s).



Energy Spectra Analysis

• In this work, we compared two ELSPEC fit results:

• the first from the standard analysis using raw 𝑁𝑒 and

• the second from the new analysis using 𝑁𝑒 fitted with BAFIM.

• We investigated the 2016/03/09 auroral event using data from EISCAT 
UHF radar observation in Tromsø, Norway.



Energy Spectra Analysis, Raw vs BAFIM  𝑵𝒆

• Top: raw electron density, evaluated under 
the assumption of 𝑇𝑒=𝑇𝑖.

• 2nd : BAFIM electron density.

• 3rd : difference in 𝑁𝑒 , (BAFIM fit 
subtracted from raw fit ).

• Bottom: temperature ratio fitted with 
BAFIM.

• BAFIM fitted 𝑁𝑒 is larger than raw 𝑁𝑒
when the electron gas is heated by 
precipitation (𝑇𝑒 > 𝑇𝑖).
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Energy Spectra Analysis, Raw vs BAFIM 𝑵𝒆 Cont’d 

• Top: the upward field-aligned 
current (FAC) carried by 
precipitating electrons.

• ELSPEC with raw 𝑁𝑒 (blue).

• ELSPEC with BAFIM fitted 𝑁𝑒 (red).

• Middle: energy spectra calculated 
using raw electron density.

• Bottom: energy spectra calculated 
using electron density fitted with 
BAFIM.
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Energy Spectra Analysis, Raw vs BAFIM 𝑵𝒆 Cont’d 

• Considerable differences can be observed both in the FAC and energy 
spectra.

• ELSPEC with BAFIM fitted 𝑁𝑒 produces wider energy spectral shapes 
than ELSPEC with raw 𝑁𝑒.

• More soft (less energetic) electrons are observed with BAFIM fitted 𝑁𝑒
than with raw 𝑁𝑒, because the raw 𝑁𝑒 underestimates the electron density 
in the upper part of E region. 

• Current densities become higher for BAFIM fitted𝑁𝑒 than with raw 𝑁𝑒. 



Summary

• We used the Bayesian filtering method (BAFIM) to fit the plasma 
parameters, including the ion composition with short time steps ( 6 s).

• The BAFIM fit produces an estimate of the ion composition profile 
and as a result clear artefacts from the ion temperature profiles are 
removed.

• Differential energy spectra and FAC calculated with ELSPEC using 
raw 𝑁𝑒 and BAFIM fitted 𝑁𝑒 as inputs may be considerably different, 
especially if 𝑇𝑒 is elevated.

• ELSPEC with BAFIM fitted 𝑁𝑒 gives larger fluxes of low-energy 
electrons than ELSPEC with raw 𝑁𝑒, because the raw 𝑁𝑒 are 
underestimates in the upper part of E region during electron heating.
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