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What drives glacial-interglacial reorganisation of water masses?

preindustrial Last Glacial Maximum

Curry and Oppo (2005)
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Key player in water mass changes: Antarctic sea ice

Antarctic sea ice cover

LGM: up to 7° equatorward expansion

Winter sea ice (e.g. Gersonde et al., 2005; Benz et al., 2016)
(glacial; cLimAP)

Winter sea ice
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Simulations: MITgcm single-basin model with re-entrant channel

(e.g. Nikurashin and Vallis, 2011)

1° X 1° horizontal resolution with 29 vertical levels

Ocean model coupled to dynamic sea-ice model
[4km
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LGM simulations: forced solely by atmospheric cooling (2-6°C, polar-amplified)
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atmospheric
cooling

increased Antarctic
sea-ice formation

=

more brine rejection
and buoyancy loss

Linking atmospheric cooling to increased ocean carbon storage

- stronger deep ‘ abyssal cell isolation and
stratification less air-sea gas exchange

—

=

more deep-ocean

carbon storage
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Linking atmospheric cooling to increased ocean carbon storage

Antarctic Bottom Water (AABW) more isolated from surface at LGM due to: "carbon if;?:ge:",;
(1) Weaker mixing with the upper cell (shallower water masses’ interface) YES! =

(2) Reduced air-sea gas exchange (upwelling only under sea ice)

a) b) Shading and contours: Dissolved

— 24 Inorganic Carbon (DIC) in the
1,35 Mmodel (meridional cross-section)
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Linking atmospheric cooling to increased ocean carbon storage

Carbon pump decomposition (following ito and Follows, 2005)

Glacial pCO, drawdown
Solubility pump contribution

<

temperature effect on|solubility
Disequilibrium pump contribution
Biological pump contribution

soft tissue + carbonate pump (includes|alkalinity effect)
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Sensitivity experiments: pCO, and carbon pump decomposition

Control k—50% x+50% No Seasonal Max *50% diapycnal diffusivity (k)
ice cycle \ bio. —> more mixing with upper cell

—> stronger disequilibrium pump
pco, Pl (ppm) 278 278 270 - less pCO, drawdown

pco, LGM 238 @ 236 @ —50% diapycnal diffusivity (x)
?2? ++ ++

(ppm) —_— > less mixing with upper cell
PI-LGM 16 20 16 17 15 12 - weaker dlsequmbrl.um pump
. - drawdown should increase?
solubility
pump (ppm) Sea-ice “lid” effect removed
—> only 10 ppm drawdown
P!'LGM —L& A =2 _16® 122 —> much weaker diseq. pump
biological ++ (from circulation changes only)
pump (ppm) “ o -
Max biological productivity
PI-LGM 39 @ @ 14 =10 (e.g. glacial iron fertilisation)
disequilibrium T+ —= —=  Runis forced with - model’s drawdown potential
pump (ppm) Zetamsf;‘nit{eéatz"r';‘f (LGM data: ~190 ppm)
slight degrease in Marzocchi and Jansen (2019, Nat.Geosci)
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Summary and conclusions

« LGM ocean circulation changes and expanded Antarctic sea-ice cover lead to further
Antarctic Bottom Water (lower overturning cell) isolation from the upper cell, favouring
increased deep-ocean carbon storage.

 In these simulations, physical changes alone (forced solely by atmospheric cooling) result in
40 ppm pCO, drawdown (half of glacial-interglacial variations from data)

Close coupling between CO, and Antarctic air temperatures (e.g. ice core record)

» Ocean circulation changes contribution: ~10 ppm drawdown
Sea-ice capping contribution: ~30 ppm drawdown

Can’t fully separate contributions = sea-ice expansion leads to circulation changes.

» Changes in disequilibrium pump (main contribution to drawdown in LGM ctrl simulation) are
consistent in sensitivity experiments, but some changes in pCO, are less straightforward.

 |dealised sensitivity experiment reaching maximum model’s drawdown potential shows that
increasing contribution from biological pump can push pCO, below LGM concentrations.
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