

Controls on oxygen response to climate change on the Northwest European Continental Shelf

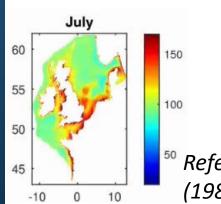
<u>Sarah Wakelin</u>¹, Yuri Artioli², Momme Butenschön³, Jason Holt¹, Jeremy Blackford²

¹National Oceanography Centre, UK
²Plymouth Marine Laboratory, UK
³Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy

EGU General Assembly May 2020

Background

- Climate change affects dissolved oxygen in the ocean through:
 - changing water temperature and salinity (affecting oxygen solubility)
 - increasing biological cycling rates (affecting photosynthesis/respiration)
 - altering nutrient supplies that feed phytoplankton production
 - changing water column stratification (affecting vertical mixing).
- Driven by solubility and nutrient supply changes, there has been a global decline in dissolved oxygen concentrations since at least the middle of the 20th century^{*}.
- In shelf seas
 - under seasonal density stratification, oxygen can become depleted below the pycnocline;
 - low oxygen concentrations are replenished when seasonal stratification breaks down.
- We investigate *solubility* and *ecosystem* controls on near-bed oxygen concentrations for the northwest European Continental Shelf under the RCP8.5 "business as usual" climate scenario.

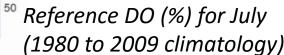

Methods

Model projection using a coupled hydrodynamics-ecosystem model:

- AMM7 (7km horizontal resolution, 33 vertical s-sigma levels)
- Hydrodynamics model: NEMOv3.2¹
- Ecosystem model: European Regional Seas Ecosystem Model (ERSEM²)
- RCP8.5 "business as usual" emissions scenario for the period 1980-2099.

Oxygen controls

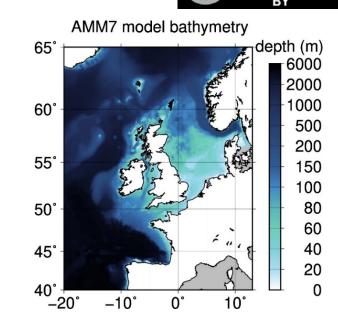
partition dissolved oxygen (DO) into

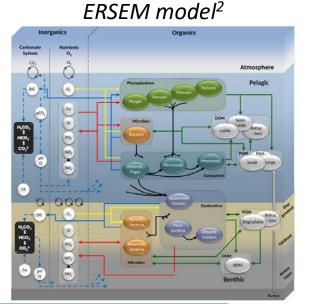


solubility $DO = (reference DO) \times (oxygen solubility)$

ecosystem DO change = DO - solubility DO,

where

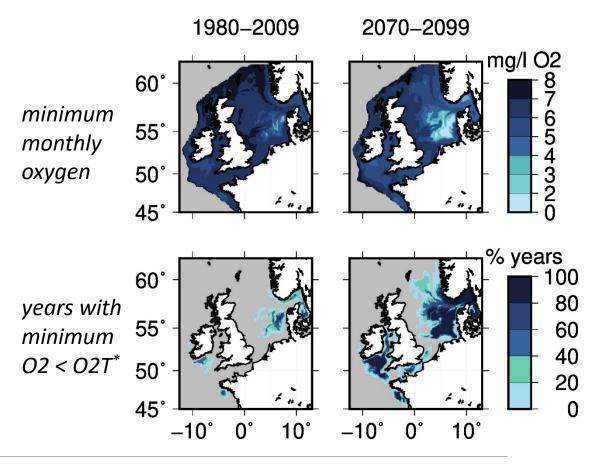

- oxygen solubility is a function of temperature and salinity³, and
- *ecosystem DO change* is due to changes in ecosystem processes since the period 1980 – 2009.



¹https://www.nemo-ocean.eu/

National Oceanography Centre

²https://www.pml.ac.uk/Modelling at PML/Models/ERSEM ³Weiss, R. F. (1970), https://doi.org/10.1016/0011-7471(70)90037-9

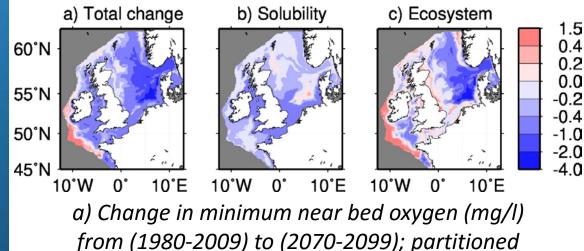

noc.ac.uk

Results: near-bed oxygen change

- Oxygen concentrations on the NW European shelf reduce in the model future.
- By 2099 they are projected to fall below the depletion threshold^{*} more frequently and for longer.
- Projection for the NW European shelf by 2070 2099:
 - the area of oxygen depletion increases by ~240 %
 - mean near-bed oxygen concentration decreases by ~6.3 %
 - monthly minimum near-bed oxygen concentration decreases by ~7.7 %

compared to the 1980 – 2009 mean.

• The model simulation estimates *potential* future oxygen concentrations consistent with the RCP8.5 climate scenario. Results are affected by uncertainties both in model setup and the atmospheric data driving the model.



noc.ac.uk


Results: controls on near-bed oxygen

into b) solubility and c) ecosystem changes

- Solubility changes account for
 - 73 % of the mean oxygen decline and
 - 50 % of the monthly minimum oxygen decline.
- Ecosystem changes account for
 - 27 % of the mean oxygen decline and
 - 50 % of the monthly minimum oxygen decline.
- By 2050, the ecosystem impact exceeds that of solubility in regions of the eastern North Sea:

Change in minimum near-bed oxygen from present day (solubility; ecosystem). Regions of the North Sea

National Oceanography Centre

Thank you

Making Sense of Changing Seas

noc.ac.uk