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- We present observations of EDRs at the
| The Electron Diftfusion Region (EDR) is the region where magnetic Earth’'s magnetopause and magnetotail.
| reconnection is initiated and electrons are energized.

It is only with the high resolution particle data and the small inter-
' spacecraft separation provided by MMS that the structure of the
EDR can be studied in detail by means of multi-spacecraft analysis.

Magnetopause: we select an EDR encounter
with the smallest inter-spacecraft separation
of 6 km ~ 3 de. We report evidences of
inhomogeneous current densities and patchy
energy conversion over a few de, suggesting
that the EDR can be rather structured.

\

- One of the key unanswered questions is whether the EDR has a
laminar or a inhomogeneous structure at electron scales and

below.

'? Magnetotail: the reported EDR encounter is

characterised by an extended electron

demagnetisation region and by significant

magnetic field fluctuations (~ 10% of the

| : " o
The presence of small scale structure and inhomogeneities within

'the EDR could influence the overall reconnection process e.g.

~affecting the reconnection rate or the electron energisation

‘ processes in the EDR.

reconnected magnetic field) with frequencies |
. P 4 - of the order of fLH



https://meetingorganizer.copernicus.org/EGU2020/EGU2020-13405.html

ot Electron Diffusion Region encounter at the magnetopause: overview
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MMS stays mostly in the magnetospheric boundary layer (Bz > 0, n ~ 10 cm-3).
' Between 12:05:41.2 and 12:05:43.2, Bz becomes negative (yellow shaded area).

At the second Bz reversal an ion and electron jet reversal are observed (VA ~ 100

B| reaches the minimum value of 3 nT.

MMS Location for 2017-01-27 12:00:00 UTC
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st MMS crosses the magnetopause close to the reconnection site
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- The MMS trajectory relative to the magnetopause é)
 is established considering the behaviour of B and J | 2
I and it is represented in the sketch on the right. | BN . N\
w S, ¢\
Despite the electron scale inter-spacecraft § ¢ C

separation, there are differences among the $
spacecraft measurement indicating strong spatial |
gradients.

trajectory
' The current sheet thickness (~15 de) indicates that

the current sheet is at electron scales.

| . :
The magnetic field radius of curvature Rc becomes |
comparable with the spacecraft separation at the
center of the current sheet.

These are indications that MMS crosses the
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EDR signatures at the magnetopause

The typ|ca| EDR S|gnatures are observed [Burch et al. Saence 201 6] [Webster et
al . JGR, 201 8]

Electron demagnetisation
Peak electron agyrotropy [Swisdak, GRL, 2016]
f) Parallel electron heating

g) An electron population parallel to B propagates towards the |[B| minimum. At
the |[B| minimum this beam is no longer observed and the PAD looks isotropic
‘while the distribution functions exhibit oblique beams. This signature has been
|dent|f|ed as indication of electron demagnetlzatlon [Egedal et aI PRL, 201 8]
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e Multi-spacecraft analysis reveals differences among spacecraft observations
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moving from from the magnetosphere to

the magnetosheath side of the

|

- EM ~ EN in contrast with standard picture of |

laminar EDR and consistent with simulations

2017].

appears to be connected to the large ve N ~ |

S | Ve M.
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Multi-spacecraft data analysis at the
“magnetopause reveals that the EDR can be

| structured at electron-scale:

- Current density JM inhomogeneous at
electron scale (JM ~ 1200 nA/m2 for MM3
and JM ~ 800 nA/m2 for other s/c)

- JM ~ JN and JN < 0 so that electrons are

magnetopause (not consistent with inflow)

of turbulent current sheet [Price et al., JGR,

- Energy conversion is patchy at the EDR.

The origin of the patchy energy conversion |
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e
Other observations and simulations are suggesting the idea of a complex EDR
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Electron Diffusion
MMS3

Region encounter at the magnetotail
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[Cozzani et al., in preparation]
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Current sheet width ~ 2 de

This event has been reported by Zhou et al. (

|
|

| Science, 2016] [Webster et al., JGR, 2018]:

(a) |B| minimum (guide field ~2 nT)

(c)ion and (d) and electron flow reversal
(e) Strong current JM ~ 200 nA/m2 carried
(

(

f)Hall E
(g) Electron temperature anisotropy closer
u (h) Energy conversion E.J>0

Tailward

ApJ, 2019) as a magnetotail EDR

encounter with weak guide field (13% of B in the inflow region).

| MMS stays mostly in the plasma sheet. The EDR signatures are observed [Burch et al., |

by electrons (d)

to the inflow region

Earthward

LMN = [-0.98,5-0.141, 0.097;
0.152,0.982,-0.109;
-0.080, 0.122, 0.989] GSM

s/c separation ~ 20 km ~1.5 de
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- An extended interval of electron demagnetisation is observe

|
|

| It lasts for a

!
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BN is changing sign several times during the EDR crossing.

Background field
fuax = 0.5Hz

12:18:20 12:18:40

Significant magne
field fluctuations (>10% of the upstream total field) are observed in all three

. components.
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Magnetic field fluctuations analysis in the EDR
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e Magnetic field fluctuations analysis in the EDR
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Power spectra of the magnetic field

fluctuations along the z direction for the
interval 12:18:30.3 - 12:18:36.3.

|

J(P,..(0B)) =14 Hz
Vo = 335 km/s

= [0.0423, —0.9484, 0.3141] GSM
= [0.2059 —0.9595, 0.1916] LMN

klp,=0.3
K|\/p.p; =2.5

A=V, lf =396 km = 1.8 ,/p.p;

*' The k vector is obtalned with four spacecraft method based on the phase
| differences between the difference spacecraft pairs. k is mainly aligned in the
M direction of the current in the EDR (-M direction).

The fluctuations observed in the EDR and in its closest surroundings appear to be
| characterised f ~fLH and by a rather long wavelength. Also, they propagate
perpendicularly to the magnetic field.
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Summary

i We analyse the magnetic field fluctuations observed during an EDR

| encounter with weak guide field.
\

| Multi-spacecraft data analysis at the magnetopause revealed that

' the Electron Diffusion Region can be structured at electron-scale.

| Main findings are:

The fluctuations are characterised by frequency close to the lower
hybrid frequency and by rather long wavelength. They propagate
| perpendicularly to the background magnetic field, along the
direction of the current density. The amplitude of the fluctuations is
- >10 % of the upstream total magnetic field in all the three
l directions.

- Current density JM is inhomogeneous at electron scale

- EM ~ EN in contrast with standard picture of laminar EDR

B Energy conversion is patchy at the EDR |
R R ; These fluctuations could possibly impact the structure of the EDR.
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Thank you for reading!
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