A Comparison of Field Techniques for the Analysis of **Groundwater - Surface-Water Interactions: Porewater** Sampling, Hyporheic Temperature and EC Time Series

D524 – EGU2020

Nicolai Brekenfeld¹ (nxb634@bham.ac.uk), Uwe Schneidewind¹, Sophie Comer-Warner¹, Hannah Schulz², Nick Kettridge¹, Theresa Blume³, Hjalmar Laudon⁴, Kevin Bishop⁵, Adam Ward⁶, David Hannah¹, Stefan Krause¹

¹School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK ²Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany ³German Research Center for Geosciences (GFZ), Potsdam, Germany ⁴Swedish University of Agricultural Sciences (SLU), Umea, Sweden ⁵Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden ⁶Indiana University, SPEA, Bloomington, USA

© Authors. All rights reserved

Porewater sampling: Induced Hyporheic Flow?

Does porewater sampling frequency effect hyporheic flow?

Flow direction	Sampling Depth (cm)	Increase in hyporheic EC relative to surface EC (%), after 2.5 hours of constant-rate injection			
		High Sampling frequency	Medium Sampling frequency	Low Sampling frequency	
Downwelling: -0.10 cm cm ⁻¹	5	101	99	97	
	10	98	99	97	R AN
	15	95	95	92	
	20	88	86	76	
Neutral: 0.03 cm cm ⁻¹	5	90	85	77	
	10	83	60	38	
Upwelling: 0.13 cm cm ⁻¹	5	51	55	48	

- 3 separate, nearly identical, 3-hour constant-rate NaCl injections on 3 consecutive days during baseflow period
- Sampling of three multi-level piezometers in downwelling, near neutral and upwelling locations at various depths
- Sampling after SW plateau has been reached: only once after 2.5 hours (Low); after ca 90 min and 2.5 hours (Medium); after ca every 45 min and 2.5 hours (High)
- Sampling rate: 1 ml min⁻¹; sampling volume: 10 ml

Low-cost EC sensor

We developed a small, low-cost EC sensor to measure hyporheic salt tracer breakthrough curves -> reduction of porewater sampling to a minimum

- Small (< 1 cm): low disturbance of hyporheic flow paths
- Low-cost (< 10 EUR): therefore large numbers for high spatial sensor densities
- Hyporheic BTCs without porewater sampling: hyporheic flow paths and residence times on small scale
 - Only for sites with significant proportion of SW •
 - -> therefore combining with porewater sampling advantageous •
- Induced hyporheic flow due to porewater sampling possible to detect
 - If EC of porewater is distinct from EC of SW •

Sep 10

Sep 08

Low-cost EC sensor and temperature time series

Comparison of vertical fluxes based on low-cost EC sensor and time series of temperature profiles

- EC-sensor: possible to detect dynamic and shallow flow paths
- Temperature time series: also possible to calculate upward fluxes

Fluxes based on EC-sensor data:

- Measurement of BTCs at 5, 10, 20 cm
- Mean tracer arrival times ranging from
 0.3 to 57 hours
- Grey points: no observable BTC after 90 hours

Fluxes based on temperature time series:

- Temperature measurements every 5 to 20 cm up until 40 cm depth
- 1D flow and heat transport modelling (Vandersteen, G. et al. (2015): WRR)