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Why do we need statistical emulator ?

3 kind of climate models :

GCM : RCM : CPRCM :
- 10-50 km resolution - 1-5 km resolution
- 100-300 km resolution - Limited area - Limited area ( smaller than
- On the whole planet - Forced at its boundaries by RCMs)
- Computationally “cheap” a GCM - Often forced by a RCM
- Computationally expensive - Computationally really

expensive
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Why do we need statistical emulator ?

To deliver robust information on future
climate change at local scales:

>

>

Cover the full range of uncertainties
about the future climate change signal.
Fill up a [SCENARIO x GCM x RCM]
matrix with several members.

Incompatible with the computational
costs of Regional Climate Models ( even

more true with the new generation of
CP-RCM).
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One solution : Statistical emulation of RCM

Idea: Combine dynamical downscaling and statistical methods Advantages:
(machine learning) to fill up the [SCENARIO x GCM x RCM ] matrix

with new runs and several members. e Learnthe future relationship

(no question of
transferability) and on the
whole grid of the RCM (no
need of observations).

Output from e Should be able to emulate a
| the GCM new GCM.
|

e Computationally cheaper
Y = F(X)

than RCMs.
Machine e Reproduce the defaults of the

= Leaming = ROV
e 1emulator by RCM

A

F

We learn the downscaling function from the existing simulations.

Limitations:




Methods to build the emulator

] 1971-2000 climatology over EUC11 domain
X coming from an UPSCALED RCM

There are large scale differences between RCM and
GCM. Recent papers tend to show that they are due to ™
the lower complexity of the RCM (Boé et al. 2020, Schwingshackl
etal 2019).
GCM large scale is more trustable than RCM one.
=> Focus on the downscaling function of the RCM, train (CNRM-CM5)

Near-Surface Air Temperature
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Machine learning method :Neural Network
To learn the downscaling function of the RCM we used mg‘ ’ H"’ o
an adapted U-NET, which is a Neural Network 1l 1
architecture based on Convolutional layers. We selected | U-ngt

'l architecture,

these kind of architectures for their ability to deal with
spatial structures.
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DATA to train the emulator

e X:Fromthe UP RCM on achosen domain

4 altitude fields : ZG, TA, HUS, (UAVA) at 850, 700 and 500 hPa
3 surface variables : TAS, PR, (UAS,VAS)
on the red domain ([-5,10]E x [35,50]N)
Daily frequency

o O O O

e Y :RCMoutput = Daily Surface Temperature on box over South Wes
of France including the Pyrenees and the Atlantic coast (blue box on the
map).

= Anomalies mode : We remove from the local temperature the
temperature average on a 5x5 GCM grid point box.
So for a RCM grid pointi:
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Validation Step

e We first test the ability of the emulator to reproduce the same simulation it was trained on,
but different years.

e Simulation: ALADIN6 12km forced by CNRM-CM5 (150km) RCP4.5, period 2006-2100,
daily timescale

e Trainingset:70% of the years, Testing set: 30% of the years

e The emulation presents good results :
o RMSE, BIAS and correlation are really good on every points.
o  The PDFsand Time Series plots are also really satisfying (see next slide).
o  Someimprovement can still be done on highest mountain points.

YAnom RMSE (°C) Correlation BIAS (°C)
, Prediction example

098

0.96

094

0.92

0.90

0.88




Validation Step
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Application : Downscaling of a new run

e Trainingset:2006-2100 ALADING simulation forced by CNRM-CM5 with scenario RCP 4.5
e Downscaling of ALADINéG forced by CNRM-CM5 on 2006-2100 RCP 8.5.
e This simulation exists, so we can verify our emulation
= with for each grid point i, the comparison referenceis T ASrcm,i — T ASups—RrRCM 5+5boz
since we remove the large scale average
e Theresults are disappointing here but the emulator shows promising results:
= Theclimatology is respected ( reasonable bias and rmse, also visible on PDFs plots on next slide)
=  The anomalies seasonality and temporality is respected in most cases (Correlation + Time series plots)
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Application : Downscaling of a new run
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Summary and Future work

e Wedeveloped the concept of RCM emulators and the methodology.
e We built a satisfying 2D emulator for ALADIN RCM using a Neural Network architecture.
o The performance of the emulator in the validation step are good but perfectible.

o Theresults of the application are promising but we expect more.

e More configurations have to be tested ( ex : train on historic and rcp 85, application on rcp 45).
e More test have to be done : downscaling of other GCMs, other variables, larger domain.

e Further work should also be done to define the reference scale for the anomalie mode.



